These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19317904)

  • 1. A microfluidic device to acquire high-magnification microphotographs of yeast cells.
    Ohnuki S; Nogami S; Ohya Y
    Cell Div; 2009 Mar; 4():5. PubMed ID: 19317904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A real-time monitoring system for automatic morphology analysis of yeast cultivation in a jar fermenter.
    Kitahara Y; Itani A; Oda Y; Okamura M; Mizoshiri M; Shida Y; Nakamura T; Kasahara K; Ogasawara W
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4683-4693. PubMed ID: 35687157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid automated cell quantification on HIV microfluidic devices.
    Alyassin MA; Moon S; Keles HO; Manzur F; Lin RL; Hæggstrom E; Kuritzkes DR; Demirci U
    Lab Chip; 2009 Dec; 9(23):3364-9. PubMed ID: 19904402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.
    Yang Yu B; Elbuken C; Ren CL; Huissoon JP
    J Biomed Opt; 2011 Jun; 16(6):066008. PubMed ID: 21721809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program.
    Negishi T; Nogami S; Ohya Y
    J Biotechnol; 2009 May; 141(3-4):109-17. PubMed ID: 19433213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated microfluidic device for the sorting of yeast cells using image processing.
    Yu BY; Elbuken C; Shen C; Huissoon JP; Ren CL
    Sci Rep; 2018 Feb; 8(1):3550. PubMed ID: 29476103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GEMA-An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices.
    Isa-Jara R; Pérez-Sosa C; Macote-Yparraguirre E; Revollo N; Lerner B; Miriuka S; Delrieux C; Pérez M; Mertelsmann R
    J Imaging; 2022 Oct; 8(10):. PubMed ID: 36286375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary performances of convolutional and capsule neural networks on classifying microfluidic images of dividing yeast cells.
    Ghafari M; Clark J; Guo HB; Yu R; Sun Y; Dang W; Qin H
    PLoS One; 2021; 16(3):e0246988. PubMed ID: 33730031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.
    Ohnuki S; Enomoto K; Yoshimoto H; Ohya Y
    J Biosci Bioeng; 2014 Mar; 117(3):278-84. PubMed ID: 24012106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mycelyso - high-throughput analysis of Streptomyces mycelium live cell imaging data.
    Sachs CC; Koepff J; Wiechert W; Grünberger A; Nöh K
    BMC Bioinformatics; 2019 Sep; 20(1):452. PubMed ID: 31484491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells.
    Piety NZ; Gifford SC; Yang X; Shevkoplyas SS
    Vox Sang; 2015 Oct; 109(3):221-30. PubMed ID: 25900518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assignment of unimodal probability distribution models for quantitative morphological phenotyping.
    Ghanegolmohammadi F; Ohnuki S; Ohya Y
    BMC Biol; 2022 Mar; 20(1):81. PubMed ID: 35361198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant chip for high-throughput phenotyping of Arabidopsis.
    Jiang H; Xu Z; Aluru MR; Dong L
    Lab Chip; 2014 Apr; 14(7):1281-93. PubMed ID: 24510109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets.
    Nakagawa Y; Ohnuki S; Kondo N; Itto-Nakama K; Ghanegolmohammadi F; Isozaki A; Ohya Y; Goda K
    Lab Chip; 2021 Sep; 21(19):3793-3803. PubMed ID: 34581379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans.
    Gokce SK; Guo SX; Ghorashian N; Everett WN; Jarrell T; Kottek A; Bovik AC; Ben-Yakar A
    PLoS One; 2014; 9(12):e113917. PubMed ID: 25470130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of image processing program for yeast cell morphology.
    Ohtani M; Saka A; Sano F; Ohya Y; Morishita S
    J Bioinform Comput Biol; 2004 Jan; 1(4):695-709. PubMed ID: 15290760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.