These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 19318247)
41. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor. Kinnunen PH; Puhakka JA Biotechnol Bioeng; 2004 Mar; 85(7):697-705. PubMed ID: 14991647 [TBL] [Abstract][Full Text] [Related]
42. Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Zhang ZP; Show KY; Tay JH; Liang DT; Lee DJ; Jiang WJ Biotechnol Bioeng; 2007 Apr; 96(6):1040-50. PubMed ID: 17089398 [TBL] [Abstract][Full Text] [Related]
43. Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor. Ghaniyari-Benis S; Borja R; Monemian SA; Goodarzi V Bioresour Technol; 2009 Mar; 100(5):1740-5. PubMed ID: 19000944 [TBL] [Abstract][Full Text] [Related]
44. The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Koskinen PE; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2007 Jul; 97(4):742-58. PubMed ID: 17163514 [TBL] [Abstract][Full Text] [Related]
45. Biodegradation of wastewater pollutants by activated sludge encapsulated inside calcium-alginate beads in a tubular packed bed reactor. Sergio AM; Bustos TY Biodegradation; 2009 Sep; 20(5):709-15. PubMed ID: 19340591 [TBL] [Abstract][Full Text] [Related]
46. Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Fouad Sarrouh B; Tresinari Dos Santos D; Silvério da Silva S Biotechnol J; 2007 Jun; 2(6):759-63. PubMed ID: 17427994 [TBL] [Abstract][Full Text] [Related]
47. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285 [TBL] [Abstract][Full Text] [Related]
48. Bioconversion of selenate in methanogenic anaerobic granular sludge. Astratinei V; van Hullebusch E; Lens P J Environ Qual; 2006; 35(5):1873-83. PubMed ID: 16973629 [TBL] [Abstract][Full Text] [Related]
49. Thermophilic biohydrogen production from glucose with trickling biofilter. Oh YK; Kim SH; Kim MS; Park S Biotechnol Bioeng; 2004 Dec; 88(6):690-8. PubMed ID: 15532039 [TBL] [Abstract][Full Text] [Related]
50. Quantitative image analysis as a diagnostic tool for monitoring structural changes of anaerobic granular sludge during detergent shock loads. Costa JC; Abreu AA; Ferreira EC; Alves MM Biotechnol Bioeng; 2007 Sep; 98(1):60-8. PubMed ID: 17304560 [TBL] [Abstract][Full Text] [Related]
51. Effect of salt concentration in anammox treatment using non woven biomass carrier. Liu C; Yamamoto T; Nishiyama T; Fujii T; Furukawa K J Biosci Bioeng; 2009 May; 107(5):519-23. PubMed ID: 19393551 [TBL] [Abstract][Full Text] [Related]
52. Comparison of two continuous fungal bioreactors for posttreatment of anaerobically pretreated weak black liquor from kraft pulp mills. Ortega-Clemente A; Marín-Mezo G; Ponce-Noyola MT; Montes-Horcasitas MC; Caffarel-Méndez S; Barrera-Cortés J; Poggi-Varaldo HM Biotechnol Bioeng; 2007 Mar; 96(4):640-50. PubMed ID: 16937406 [TBL] [Abstract][Full Text] [Related]
53. Use of the Static Granular Bed Reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Debik E; Coskun T Bioresour Technol; 2009 Jun; 100(11):2777-82. PubMed ID: 19208468 [TBL] [Abstract][Full Text] [Related]
54. Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors. Damianovic MH; Moraes EM; Zaiat M; Foresti E Bioresour Technol; 2009 Oct; 100(19):4361-7. PubMed ID: 19443213 [TBL] [Abstract][Full Text] [Related]
55. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor. Nevatalo LM; Mäkinen AE; Kaksonen AH; Puhakka JA Bioresour Technol; 2010 Jan; 101(1):276-84. PubMed ID: 19716290 [TBL] [Abstract][Full Text] [Related]
56. Increased biological hydrogen production with reduced organic loading. Van Ginkel SW; Logan B Water Res; 2005 Oct; 39(16):3819-26. PubMed ID: 16129472 [TBL] [Abstract][Full Text] [Related]
57. [Start-up of EGSB for biohydrogen production from compost leachate]. Liu Q; Xu H; Li M; Xu ZY; Qian GR Huan Jing Ke Xue; 2009 Aug; 30(8):2491-6. PubMed ID: 19799322 [TBL] [Abstract][Full Text] [Related]
58. The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules. Ngoma L; Masilela P; Obazu F; Gray VM Bioresour Technol; 2011 Oct; 102(19):8986-91. PubMed ID: 21782420 [TBL] [Abstract][Full Text] [Related]
59. The effect of biomass immobilization support material and bed porosity on hydrogen production in an upflow anaerobic packed-bed bioreactor. Fernandes BS; Saavedra NK; Maintinguer SI; Sette LD; Oliveira VM; Varesche MB; Zaiat M Appl Biochem Biotechnol; 2013 Jul; 170(6):1348-66. PubMed ID: 23666613 [TBL] [Abstract][Full Text] [Related]
60. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Shi Y; Zhao XT; Cao P; Hu Y; Zhang L; Jia Y; Lu Z Biotechnol Lett; 2009 Sep; 31(9):1327-33. PubMed ID: 19466560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]