BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19318622)

  • 41. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer's disease.
    Standridge JB
    Curr Alzheimer Res; 2006 Apr; 3(2):95-108. PubMed ID: 16611010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered calcium signaling and neuronal injury: stroke and Alzheimer's disease as examples.
    Mattson MP; Rydel RE; Lieberburg I; Smith-Swintosky VL
    Ann N Y Acad Sci; 1993 May; 679():1-21. PubMed ID: 8512177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Relevance of Amyloid β-Calmodulin Complexation in Neurons and Brain Degeneration in Alzheimer's Disease.
    Poejo J; Salazar J; Mata AM; Gutierrez-Merino C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34067061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amyloid pathology disrupts gliotransmitter release in astrocytes.
    Pillai AG; Nadkarni S
    PLoS Comput Biol; 2022 Aug; 18(8):e1010334. PubMed ID: 35913987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.
    Abramov AY; Canevari L; Duchen MR
    J Neurosci; 2003 Jun; 23(12):5088-95. PubMed ID: 12832532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease.
    Jackson RJ; Rudinskiy N; Herrmann AG; Croft S; Kim JM; Petrova V; Ramos-Rodriguez JJ; Pitstick R; Wegmann S; Garcia-Alloza M; Carlson GA; Hyman BT; Spires-Jones TL
    Eur J Neurosci; 2016 Dec; 44(12):3056-3066. PubMed ID: 27748574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dysregulation of calcium homeostasis in Alzheimer's disease.
    Small DH
    Neurochem Res; 2009 Oct; 34(10):1824-9. PubMed ID: 19337829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice.
    Kidana K; Tatebe T; Ito K; Hara N; Kakita A; Saito T; Takatori S; Ouchi Y; Ikeuchi T; Makino M; Saido TC; Akishita M; Iwatsubo T; Hori Y; Tomita T
    EMBO Mol Med; 2018 Mar; 10(3):. PubMed ID: 29311134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Astroglial Calcium Signaling in Aging and Alzheimer's Disease.
    Verkhratsky A
    Cold Spring Harb Perspect Biol; 2019 Jul; 11(7):. PubMed ID: 31110130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic changes in Alzheimer's disease and its models.
    Pozueta J; Lefort R; Shelanski ML
    Neuroscience; 2013 Oct; 251():51-65. PubMed ID: 22687952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amyloid toxicity in Alzheimer's disease.
    Reiss AB; Arain HA; Stecker MM; Siegart NM; Kasselman LJ
    Rev Neurosci; 2018 Aug; 29(6):613-627. PubMed ID: 29447116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protofibrils of Amyloid-β are Important Targets of a Disease-Modifying Approach for Alzheimer's Disease.
    Ono K; Tsuji M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The pathophysiology of Alzheimer's disease with special reference to "amyloid cascade hypothesis"].
    Tamaoka A
    Rinsho Byori; 2013 Nov; 61(11):1060-9. PubMed ID: 24450113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice.
    Meilandt WJ; Cisse M; Ho K; Wu T; Esposito LA; Scearce-Levie K; Cheng IH; Yu GQ; Mucke L
    J Neurosci; 2009 Feb; 29(7):1977-86. PubMed ID: 19228952
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration.
    Lim CH; Kaur P; Teo E; Lam VYM; Zhu F; Kibat C; Gruber J; Mathuru AS; Tolwinski NS
    Elife; 2020 Mar; 9():. PubMed ID: 32228858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amyloid-β oligomers in cellular models of Alzheimer's disease.
    Fontana IC; Zimmer AR; Rocha AS; Gosmann G; Souza DO; Lourenco MV; Ferreira ST; Zimmer ER
    J Neurochem; 2020 Nov; 155(4):348-369. PubMed ID: 32320074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease.
    Collins JM; King AE; Woodhouse A; Kirkcaldie MT; Vickers JC
    Exp Neurol; 2015 May; 267():219-29. PubMed ID: 25747037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TOM1 Regulates Neuronal Accumulation of Amyloid-β Oligomers by FcγRIIb2 Variant in Alzheimer's Disease.
    Gwon Y; Kam TI; Kim SH; Song S; Park H; Lim B; Lee H; Lee W; Jo DG; Jung YK
    J Neurosci; 2018 Oct; 38(42):9001-9018. PubMed ID: 30185465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alzheimer's disease-associated neurotoxic mechanisms and neuroprotective strategies.
    Pereira C; Agostinho P; Moreira PI; Cardoso SM; Oliveira CR
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):383-403. PubMed ID: 16101556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular calcium signalling in Alzheimer's disease.
    Hermes M; Eichhoff G; Garaschuk O
    J Cell Mol Med; 2010 Jan; 14(1-2):30-41. PubMed ID: 19929945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.