These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 19319488)
1. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site. Lorestani B; Yousefi N; Cheraghi M; Farmany A Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
5. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359 [TBL] [Abstract][Full Text] [Related]
6. Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. Pignattelli S; Colzi I; Buccianti A; Cecchi L; Arnetoli M; Monnanni R; Gabbrielli R; Gonnelli C J Hazard Mater; 2012 Aug; 227-228():362-9. PubMed ID: 22673060 [TBL] [Abstract][Full Text] [Related]
7. Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential. Testiati E; Parinet J; Massiani C; Laffont-Schwob I; Rabier J; Pfeifer HR; Lenoble V; Masotti V; Prudent P J Hazard Mater; 2013 Mar; 248-249():131-41. PubMed ID: 23352904 [TBL] [Abstract][Full Text] [Related]
8. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337 [TBL] [Abstract][Full Text] [Related]
9. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Conesa HM; Faz A; Arnaldos R Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188 [TBL] [Abstract][Full Text] [Related]
10. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Andreazza R; Bortolon L; Pieniz S; Giacometti M; Roehrs DD; Lambais MR; Camargo FA Biol Trace Elem Res; 2011 Dec; 143(3):1729-39. PubMed ID: 21286847 [TBL] [Abstract][Full Text] [Related]
11. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
12. Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, southern Brazil. Afonso TF; Demarco CF; Pieniz S; Camargo FAO; Quadro MS; Andreazza R Environ Sci Pollut Res Int; 2019 Aug; 26(23):24132-24142. PubMed ID: 31228062 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil. Kim SH; Lee IS Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283 [TBL] [Abstract][Full Text] [Related]
14. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals. Lai HY; Juang KW; Chen ZS Int J Phytoremediation; 2010; 12(8):785-97. PubMed ID: 21166348 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils. Jeddi K; Chaieb M Environ Sci Pollut Res Int; 2018 Dec; 25(36):36636-36644. PubMed ID: 30377962 [TBL] [Abstract][Full Text] [Related]
16. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil. Mousavi Kouhi SM; Moudi M Environ Sci Pollut Res Int; 2020 Mar; 27(9):10027-10038. PubMed ID: 31933083 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
18. Absorption and translocation of copper, zinc and chromium by Sesbania virgata. Branzini A; González RS; Zubillaga M J Environ Manage; 2012 Jul; 102():50-4. PubMed ID: 22425878 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings. Shu WS; Zhao YL; Yang B; Xia HP; Lan CY J Environ Sci (China); 2004; 16(5):730-4. PubMed ID: 15559800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]