These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19319681)

  • 1. Evidence of potential averaging over the finite surface of a bioelectric surface electrode.
    van Dijk JP; Lowery MM; Lapatki BG; Stegeman DF
    Ann Biomed Eng; 2009 Jun; 37(6):1141-51. PubMed ID: 19319681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model to identify electrode influence on current distribution in the skin.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Moatamedi M
    Artif Organs; 2008 Aug; 32(8):639-43. PubMed ID: 18782136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiple-layer finite-element model of the surface EMG signal.
    Lowery MM; Stoykov NS; Taflove A; Kuiken TA
    IEEE Trans Biomed Eng; 2002 May; 49(5):446-54. PubMed ID: 12002176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of anatomical, physical, and detection-system parameters on surface EMG.
    Farina D; Cescon C; Merletti R
    Biol Cybern; 2002 Jun; 86(6):445-56. PubMed ID: 12111273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical current density model from surface electrodes.
    Waugaman WA
    Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode position and size in electrical impedance myography.
    Rutkove SB; Partida RA; Esper GJ; Aaron R; Shiffman CA
    Clin Neurophysiol; 2005 Feb; 116(2):290-9. PubMed ID: 15661107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for precise simulation of the EMG signal detected by surface electrodes.
    Farina D; Merletti R
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):637-46. PubMed ID: 11396594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface EMG: the issue of electrode location.
    Mesin L; Merletti R; Rainoldi A
    J Electromyogr Kinesiol; 2009 Oct; 19(5):719-26. PubMed ID: 18829347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle.
    Farina D; Arendt-Nielsen L; Merletti R; Indino B; Graven-Nielsen T
    IEEE Trans Biomed Eng; 2003 Mar; 50(3):354-64. PubMed ID: 12669992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings.
    Hewson DJ; Hogrel JY; Langeron Y; DuchĂȘne J
    J Electromyogr Kinesiol; 2003 Jun; 13(3):273-9. PubMed ID: 12706606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of electrode area, contact impedance and boundary shape on EIT images.
    Boyle A; Adler A
    Physiol Meas; 2011 Jul; 32(7):745-54. PubMed ID: 21646710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume conduction in an anatomically based surface EMG model.
    Lowery MM; Stoykov NS; Dewald JP; Kuiken TA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2138-47. PubMed ID: 15605861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection volume of simulated electrode systems for recording sphincter muscle electromyogram.
    Mesin L; Gervasio R
    Med Eng Phys; 2008 Sep; 30(7):896-904. PubMed ID: 18242115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electrode location on EMG signal envelope in leg muscles during gait.
    Campanini I; Merlo A; Degola P; Merletti R; Vezzosi G; Farina D
    J Electromyogr Kinesiol; 2007 Aug; 17(4):515-26. PubMed ID: 16889982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical model for surface EMG generation in volume conductors with smooth conductivity variations.
    Mesin L; Farina D
    IEEE Trans Biomed Eng; 2006 May; 53(5):773-9. PubMed ID: 16686399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.