These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1931995)

  • 1. Spiropentaneacetic acid as a specific inhibitor of medium-chain acyl-CoA dehydrogenase.
    Tserng KY; Jin SJ; Hoppel CL
    Biochemistry; 1991 Nov; 30(44):10755-60. PubMed ID: 1931995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases.
    Lieu YK; Hsu BY; Price WA; Corkey BE; Stanley CA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):E359-66. PubMed ID: 9124539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acyl-CoA dehydrogenase activity in the riboflavin-deficient rat. Effects of starvation.
    Ross NS; Hoppel CL
    Biochem J; 1987 Jun; 244(2):387-91. PubMed ID: 3663132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats.
    Kibayashi M; Nagao M; Chiba S
    Pediatr Int; 1999 Feb; 41(1):52-60. PubMed ID: 10200137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria.
    Sabbagh E; Cuebas D; Schulz H
    J Biol Chem; 1985 Jun; 260(12):7337-42. PubMed ID: 3997873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of mitochondrial fatty acid oxidation in pentenoic acid-induced fatty liver. A possible model for Reye's syndrome.
    Thayer WS
    Biochem Pharmacol; 1984 Apr; 33(8):1187-94. PubMed ID: 6712730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase.
    Nakajima Y; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Tamaoki H; Miura R
    J Biochem; 2002 Mar; 131(3):365-74. PubMed ID: 11872165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of beta-oxidation capacity of rat liver mitochondria by feeding orotic acid.
    Miyazawa S; Furuta S; Hashimoto T
    Biochim Biophys Acta; 1982 Jun; 711(3):494-502. PubMed ID: 7104378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of riboflavin deficiency and clofibrate treatment on the five acyl-CoA dehydrogenases in rat liver mitochondria.
    Veitch K; Draye JP; Van Hoof F; Sherratt HS
    Biochem J; 1988 Sep; 254(2):477-81. PubMed ID: 3178769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mitochondrial acyl-CoA dehydrogenases in the metabolism of dicarboxylic fatty acids.
    Bharathi SS; Zhang Y; Gong Z; Muzumdar R; Goetzman ES
    Biochem Biophys Res Commun; 2020 Jun; 527(1):162-166. PubMed ID: 32446361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of medium-chain acyl-CoA dehydrogenase by oct-4-en-2-ynoyl-CoA.
    Zeng J; Deng G; Yu W; Li D
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1445-8. PubMed ID: 16297616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the effects of saturated and unsaturated short-chain monocarboxylic acids on the energy metabolism of rat liver mitochondria.
    Gregersen N
    Pediatr Res; 1979 Nov; 13(11):1227-30. PubMed ID: 514688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoalloxazine ring of FAD is required for the formation of the core in the Hsp60-assisted folding of medium chain acyl-CoA dehydrogenase subunit into the assembly competent conformation in mitochondria.
    Saijo T; Tanaka K
    J Biol Chem; 1995 Jan; 270(4):1899-907. PubMed ID: 7829528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase.
    Izai K; Uchida Y; Orii T; Yamamoto S; Hashimoto T
    J Biol Chem; 1992 Jan; 267(2):1027-33. PubMed ID: 1730632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation. Studies in vivo and in vitro.
    Hovik R; Osmundsen H; Berge R; Aarsland A; Bergseth S; Bremer J
    Biochem J; 1990 Aug; 270(1):167-73. PubMed ID: 2396976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.
    Liu X; Wu L; Deng G; Chen G; Li N; Chu X; Li D
    Bioorg Chem; 2013 Apr; 47():1-8. PubMed ID: 23474214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.