These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19320155)

  • 41. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
    Weber KA; Pollock J; Cole KA; O'Connor SM; Achenbach LA; Coates JD
    Appl Environ Microbiol; 2006 Jan; 72(1):686-94. PubMed ID: 16391108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dark formation of hydroxyl radical in Arctic soil and surface waters.
    Page SE; Kling GW; Sander M; Harrold KH; Logan JR; McNeill K; Cory RM
    Environ Sci Technol; 2013 Nov; 47(22):12860-7. PubMed ID: 24111975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction.
    Crosby HA; Johnson CM; Roden EE; Beard BL
    Environ Sci Technol; 2005 Sep; 39(17):6698-704. PubMed ID: 16190229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6.
    Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB
    Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of pO
    Chen C; Meile C; Wilmoth J; Barcellos D; Thompson A
    Environ Sci Technol; 2018 Jul; 52(14):7709-7719. PubMed ID: 29890827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments.
    Roden EE; Wetzel RG
    Microb Ecol; 2003 Mar; 45(3):252-8. PubMed ID: 12658519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling the Reduction Kinetics of Munition Compounds by Humic Acids.
    Hickey KP; Murillo-Gelvez J; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2022 Apr; 56(8):4926-4935. PubMed ID: 35349281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of hematite bioreduction by natural organic matter.
    Royer RA; Burgos WD; Fisher AS; Jeon BH; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 Jul; 36(13):2897-904. PubMed ID: 12144265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment.
    Wan J; Tokunaga TK; Kim Y; Brodie E; Daly R; Hazen TC; Firestone MK
    Environ Sci Technol; 2008 Oct; 42(20):7573-9. PubMed ID: 18983077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfer and transformation mechanisms of Fe bound-organic carbon in the aquitard of a lake-wetland system during reclamation.
    Liu R; Ma T; Lin C; Chen J; Lei K; Liu X; Qiu W
    Environ Pollut; 2020 Aug; 263(Pt A):114441. PubMed ID: 32268233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments.
    Chen J; Wang C; Pan Y; Farzana SS; Tam NF
    J Hazard Mater; 2018 Jan; 341():177-186. PubMed ID: 28777963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications.
    Chen M; Kim SH; Jung HJ; Hyun JH; Choi JH; Lee HJ; Huh IA; Hur J
    Water Res; 2017 Sep; 121():150-161. PubMed ID: 28527389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Importance of allochthonous and autochthonous dissolved organic matter in Fe(II) oxidation: A case study in Shizugawa Bay watershed, Japan.
    Lee YP; Fujii M; Kikuchi T; Natsuike M; Ito H; Watanabe T; Yoshimura C
    Chemosphere; 2017 Aug; 180():221-228. PubMed ID: 28410502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coupled variations of dissolved organic matter distribution and iron (oxyhydr)oxides transformation: Effects on the kinetics of uranium adsorption and desorption.
    Ding Y; Huang X; Zhang H; Ma J; Li F; Zeng Q; Hu N; Wang Y; Dai Z; Ding D
    J Hazard Mater; 2022 Aug; 436():129298. PubMed ID: 35739799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fe(III) Photoreduction Producing Fe
    Lueder U; Jørgensen BB; Kappler A; Schmidt C
    Environ Sci Technol; 2020 Jan; 54(2):862-869. PubMed ID: 31886652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Humic acids enhance the microbially mediated release of sedimentary ferrous iron.
    Chang CH; Wei CC; Lin LH; Tu TH; Liao VH
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4176-84. PubMed ID: 25997809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.