These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 19320174)
21. Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Nam Y; Musick K; Wheeler BC Biomed Microdevices; 2006 Dec; 8(4):375-81. PubMed ID: 16799748 [TBL] [Abstract][Full Text] [Related]
22. Estimation of oxygen effective diffusion coefficient in a non-steady-state biofilm based on response time. Wang JH; Li HY; Chen YP; Liu SY; Yan P; Shen Y; Guo JS; Fang F Environ Sci Pollut Res Int; 2018 Apr; 25(10):9797-9805. PubMed ID: 29372520 [TBL] [Abstract][Full Text] [Related]
23. Biological application of micro-electro mechanical systems microelectrode array sensors for direct measurement of phosphate in the enhanced biological phosphorous removal process. Lee WH; Lee JH; Bishop PL; Papautsky I Water Environ Res; 2009 Aug; 81(8):748-54. PubMed ID: 19774851 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of Planar Microelectrode Array Using Laser-Patterned ITO and SU-8. Jeong HS; Hwang S; Min KS; Jun SB Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832760 [TBL] [Abstract][Full Text] [Related]
25. Sonochemically fabricated microelectrode arrays for biosensors. Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline. Myler S; Collyer SD; Davis F; Gornall DD; Higson SP Biosens Bioelectron; 2005 Oct; 21(4):666-71. PubMed ID: 16202881 [TBL] [Abstract][Full Text] [Related]
26. Microscale hydrodynamic analysis of aerobic granules in the mass transfer process. Liu L; Li WW; Sheng GP; Liu ZF; Zeng RJ; Liu JX; Yu HQ; Lee DJ Environ Sci Technol; 2010 Oct; 44(19):7555-60. PubMed ID: 20839859 [TBL] [Abstract][Full Text] [Related]
27. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device. Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934 [TBL] [Abstract][Full Text] [Related]
28. Dissolved oxygen as a key parameter to aerobic granule formation. Sturm BS; Irvine RL Water Sci Technol; 2008; 58(4):781-7. PubMed ID: 18776612 [TBL] [Abstract][Full Text] [Related]
29. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice. Hutton EA; Pauliukaitė R; Hocevar SB; Ogorevc B; Smyth MR Anal Chim Acta; 2010 Sep; 678(2):176-82. PubMed ID: 20888449 [TBL] [Abstract][Full Text] [Related]
30. Biofilm dynamics characterization using a novel DO-MEA sensor: mass transport and biokinetics. Guimerà X; Moya A; Dorado AD; Villa R; Gabriel D; Gabriel G; Gamisans X Appl Microbiol Biotechnol; 2015 Jan; 99(1):55-66. PubMed ID: 24859523 [TBL] [Abstract][Full Text] [Related]
31. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. Zhang S; Song Y; Wang M; Zhang Z; Fan X; Song X; Zhuang P; Yue F; Chan P; Cai X Biosens Bioelectron; 2016 Nov; 85():53-61. PubMed ID: 27155116 [TBL] [Abstract][Full Text] [Related]
32. Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models. Didier CM; Kundu A; Rajaraman S J Microelectromech Syst; 2021; 30(6):853-863. PubMed ID: 34949905 [TBL] [Abstract][Full Text] [Related]
33. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays. Wang J; Trouillon R; Dunevall J; Ewing AG Anal Chem; 2014 May; 86(9):4515-20. PubMed ID: 24712854 [TBL] [Abstract][Full Text] [Related]
34. 3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection. Yi W; Yang Y; Hashemi P; Cheng MM Biomed Microdevices; 2016 Dec; 18(6):112. PubMed ID: 27900618 [TBL] [Abstract][Full Text] [Related]
35. Spirally oriented Au microelectrode array sensor for detection of Hg (II). Huan TN; Hung le Q; Ha VT; Anh NH; Van Khai T; Shim KB; Chung H Talanta; 2012 May; 94():284-8. PubMed ID: 22608449 [TBL] [Abstract][Full Text] [Related]
36. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology]. Feng G; Sui X; Wang Y; Li G; Chai X Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208 [TBL] [Abstract][Full Text] [Related]
37. 3-D Printed Adjustable Microelectrode Arrays for Electrochemical Sensing and Biosensing. Yang H; Rahman T; Du D; Panat R; Lin Y Sens Actuators B Chem; 2016 Jul; 230():600-606. PubMed ID: 27019550 [TBL] [Abstract][Full Text] [Related]
38. A generalized model for aerobic granule-based sequencing batch Reactor. 2. Parametric sensitivity and model verification. Su KZ; Yu HQ Environ Sci Technol; 2006 Aug; 40(15):4709-13. PubMed ID: 16913128 [TBL] [Abstract][Full Text] [Related]
39. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses. Lee S; Ahn JH; Seo JM; Chung H; Cho DI Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397 [TBL] [Abstract][Full Text] [Related]
40. Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation. Böttrich M; Tanskanen JMA; Hyttinen JAK Biomed Eng Online; 2017 Jun; 16(1):85. PubMed ID: 28651645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]