These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19320425)
21. Evidence for sequential action of two ATPase active sites in yeast Msh2-Msh6. Drotschmann K; Yang W; Kunkel TA DNA Repair (Amst); 2002 Sep; 1(9):743-53. PubMed ID: 12509278 [TBL] [Abstract][Full Text] [Related]
22. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. Marsischky GT; Kolodner RD J Biol Chem; 1999 Sep; 274(38):26668-82. PubMed ID: 10480869 [TBL] [Abstract][Full Text] [Related]
23. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Marsischky GT; Filosi N; Kane MF; Kolodner R Genes Dev; 1996 Feb; 10(4):407-20. PubMed ID: 8600025 [TBL] [Abstract][Full Text] [Related]
24. Prerecognition Diffusion Mechanism of Human DNA Mismatch Repair Proteins along DNA: Msh2-Msh3 versus Msh2-Msh6. Pal A; Greenblatt HM; Levy Y Biochemistry; 2020 Dec; 59(51):4822-4832. PubMed ID: 33319999 [TBL] [Abstract][Full Text] [Related]
25. Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis. Jiang J; Bai L; Surtees JA; Gemici Z; Wang MD; Alani E Mol Cell; 2005 Dec; 20(5):771-81. PubMed ID: 16337600 [TBL] [Abstract][Full Text] [Related]
26. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. Kumar C; Eichmiller R; Wang B; Williams GM; Bianco PR; Surtees JA DNA Repair (Amst); 2014 Jun; 18():18-30. PubMed ID: 24746922 [TBL] [Abstract][Full Text] [Related]
27. Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. Lau PJ; Kolodner RD J Biol Chem; 2003 Jan; 278(1):14-7. PubMed ID: 12435741 [TBL] [Abstract][Full Text] [Related]
28. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. Drotschmann K; Yang W; Brownewell FE; Kool ET; Kunkel TA J Biol Chem; 2001 Dec; 276(49):46225-9. PubMed ID: 11641390 [TBL] [Abstract][Full Text] [Related]
29. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. Hargreaves VV; Putnam CD; Kolodner RD J Biol Chem; 2012 Nov; 287(49):41232-44. PubMed ID: 23045530 [TBL] [Abstract][Full Text] [Related]
30. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. Clark AB; Valle F; Drotschmann K; Gary RK; Kunkel TA J Biol Chem; 2000 Nov; 275(47):36498-501. PubMed ID: 11005803 [TBL] [Abstract][Full Text] [Related]
31. Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis. Mukherjee S; Law SM; Feig M Biophys J; 2009 Mar; 96(5):1707-20. PubMed ID: 19254532 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. Mendillo ML; Mazur DJ; Kolodner RD J Biol Chem; 2005 Jun; 280(23):22245-57. PubMed ID: 15811858 [TBL] [Abstract][Full Text] [Related]
33. Comparative Effects of Mercury(II) and Cadmium on MutS Homolog 6(MSH6)-Mediated DNA Mismatch Binding Activities in Zebrafish (Danio rerio) Embryos. Ho TN; Sung ST; Huang KM; Hsu T J Biochem Mol Toxicol; 2015 Nov; 29(11):513-20. PubMed ID: 26130599 [TBL] [Abstract][Full Text] [Related]
34. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). Geng H; Sakato M; DeRocco V; Yamane K; Du C; Erie DA; Hingorani M; Hsieh P J Biol Chem; 2012 Mar; 287(13):9777-9791. PubMed ID: 22277660 [TBL] [Abstract][Full Text] [Related]
35. Crystal structure and biochemical analysis of the MutS.ADP.beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. Alani E; Lee JY; Schofield MJ; Kijas AW; Hsieh P; Yang W J Biol Chem; 2003 May; 278(18):16088-94. PubMed ID: 12582174 [TBL] [Abstract][Full Text] [Related]
36. Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. Hess MT; Gupta RD; Kolodner RD J Biol Chem; 2002 Jul; 277(28):25545-53. PubMed ID: 11986324 [TBL] [Abstract][Full Text] [Related]
37. Conformational change in MSH2-MSH6 upon binding DNA coupled to ATPase activity. Mukherjee S; Feig M Biophys J; 2009 Jun; 96(11):L63-5. PubMed ID: 19486659 [TBL] [Abstract][Full Text] [Related]
38. Elucidating the role of interacting residues of the MSH2-MSH6 complex in DNA repair mechanism: A computational approach. Thirumal Kumar D; Susmita B; Judith E; Priyadharshini Christy J; George Priya Doss C; Zayed H Adv Protein Chem Struct Biol; 2019; 115():325-350. PubMed ID: 30798936 [TBL] [Abstract][Full Text] [Related]
39. The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Owen BA; H Lang W; McMurray CT Nat Struct Mol Biol; 2009 May; 16(5):550-7. PubMed ID: 19377479 [TBL] [Abstract][Full Text] [Related]
40. Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots. Cao X; Wang H; Zhuang D; Zhu H; Du Y; Cheng Z; Cui W; Rogers HJ; Zhang Q; Jia C; Yang Y; Tai P; Xie F; Liu W Chemosphere; 2018 Jun; 201():586-594. PubMed ID: 29533809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]