These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19320440)

  • 21. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.
    Dey AW; Svensson J; Ek M; Lind E; Thelander C; Wernersson LE
    Nano Lett; 2013; 13(12):5919-24. PubMed ID: 24224956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic and magnetic properties of pristine and transition metal doped ZnTe nanowires.
    Mukherjee P; Gupta BC; Jena P
    J Phys Condens Matter; 2013 Jul; 25(26):266003. PubMed ID: 23756471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semiconductor-oxide heterostructured nanowires using postgrowth oxidation.
    Wallentin J; Ek M; Vainorious N; Mergenthaler K; Samuelson L; Pistol ME; Reine Wallenberg L; Borgström MT
    Nano Lett; 2013; 13(12):5961-6. PubMed ID: 24195687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Template-Assisted Scalable Nanowire Networks.
    Friedl M; Cerveny K; Weigele P; Tütüncüoglu G; Martí-Sánchez S; Huang C; Patlatiuk T; Potts H; Sun Z; Hill MO; Güniat L; Kim W; Zamani M; Dubrovskii VG; Arbiol J; Lauhon LJ; Zumbühl DM; Fontcuberta I Morral A
    Nano Lett; 2018 Apr; 18(4):2666-2671. PubMed ID: 29579392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires.
    Kargar F; Debnath B; Kakko JP; Säynätjoki A; Lipsanen H; Nika DL; Lake RK; Balandin AA
    Nat Commun; 2016 Nov; 7():13400. PubMed ID: 27830698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced spin-orbit coupling in core/shell nanowires.
    Furthmeier S; Dirnberger F; Gmitra M; Bayer A; Forsch M; Hubmann J; Schüller C; Reiger E; Fabian J; Korn T; Bougeard D
    Nat Commun; 2016 Aug; 7():12413. PubMed ID: 27491871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures.
    Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X
    Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.
    Qian F; Gradecak S; Li Y; Wen CY; Lieber CM
    Nano Lett; 2005 Nov; 5(11):2287-91. PubMed ID: 16277469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing quantum confinement within single core-multishell nanowires.
    Martínez-Criado G; Homs A; Alén B; Sans JA; Segura-Ruiz J; Molina-Sánchez A; Susini J; Yoo J; Yi GC
    Nano Lett; 2012 Nov; 12(11):5829-34. PubMed ID: 23030721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires.
    Corfdir P; Van Hattem B; Uccelli E; Conesa-Boj S; Lefebvre P; Fontcuberta i Morral A; Phillips RT
    Nano Lett; 2013 Nov; 13(11):5303-10. PubMed ID: 24134509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.
    Tomioka K; Motohisa J; Hara S; Hiruma K; Fukui T
    Nano Lett; 2010 May; 10(5):1639-44. PubMed ID: 20377199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic modulation of the tunnelling between defect states in antidot superlattices.
    Movilla JL; Planelles J
    J Phys Condens Matter; 2012 Jul; 24(27):275301. PubMed ID: 22713775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A proposed confinement modulated gap nanowire transistor based on a metal (tin).
    Ansari L; Fagas G; Colinge JP; Greer JC
    Nano Lett; 2012 May; 12(5):2222-7. PubMed ID: 22500745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.
    Sanchez-Soares A; Greer JC
    Nano Lett; 2016 Dec; 16(12):7639-7644. PubMed ID: 27960465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial carrier confinement in core-shell and multishell nanowire heterostructures.
    Nduwimana A; Musin RN; Smith AM; Wang XQ
    Nano Lett; 2008 Oct; 8(10):3341-4. PubMed ID: 18754645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GaAs-Fe₃Si core-shell nanowires: nanobar magnets.
    Hilse M; Herfort J; Jenichen B; Trampert A; Hanke M; Schaaf P; Geelhaar L; Riechert H
    Nano Lett; 2013; 13(12):6203-9. PubMed ID: 24274677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.