These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19320440)

  • 41. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-dimensional transition metal dihalide nanowires as robust bipolar magnetic semiconductors.
    Tan X; Liu L; Xiang H; Du GF; Lou A; Fu HH
    Nanoscale; 2020 Apr; 12(16):8942-8948. PubMed ID: 32267253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial carrier confinement in core-shell and multishell nanowire heterostructures.
    Nduwimana A; Musin RN; Smith AM; Wang XQ
    Nano Lett; 2008 Oct; 8(10):3341-4. PubMed ID: 18754645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GaAs-Fe₃Si core-shell nanowires: nanobar magnets.
    Hilse M; Herfort J; Jenichen B; Trampert A; Hanke M; Schaaf P; Geelhaar L; Riechert H
    Nano Lett; 2013; 13(12):6203-9. PubMed ID: 24274677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates.
    Dimakis E; Jahn U; Ramsteiner M; Tahraoui A; Grandal J; Kong X; Marquardt O; Trampert A; Riechert H; Geelhaar L
    Nano Lett; 2014 May; 14(5):2604-9. PubMed ID: 24678901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.
    Heedt S; Manolescu A; Nemnes GA; Prost W; Schubert J; Grützmacher D; Schäpers T
    Nano Lett; 2016 Jul; 16(7):4569-75. PubMed ID: 27347816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct measurement of band edge discontinuity in individual core-shell nanowires by photocurrent spectroscopy.
    Chen G; Sun G; Ding YJ; Prete P; Miccoli I; Lovergine N; Shtrikman H; Kung P; Livneh T; Spanier JE
    Nano Lett; 2013 Sep; 13(9):4152-7. PubMed ID: 23937245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution-processed, barrier-confined, and 1D nanostructure supported quasi-quantum well with large photoluminescence enhancement.
    Yan K; Zhang L; Kuang Q; Wei Z; Yi Y; Wang J; Yang S
    ACS Nano; 2014 Apr; 8(4):3771-80. PubMed ID: 24580094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dislocation-free axial InAs-on-GaAs nanowires on silicon.
    Beznasyuk DV; Robin E; Hertog MD; Claudon J; Hocevar M
    Nanotechnology; 2017 Sep; 28(36):365602. PubMed ID: 28671871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.
    Yu X; Wang H; Pan D; Zhao J; Misuraca J; von Molnár S; Xiong P
    Nano Lett; 2013 Apr; 13(4):1572-7. PubMed ID: 23517546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-assembled nanodisks in coaxial GaAs/GaAsBi/GaAs core-multishell nanowires.
    Zhang B; Jansson M; Shimizu Y; Chen WM; Ishikawa F; Buyanova IA
    Nanoscale; 2020 Oct; 12(40):20849-20858. PubMed ID: 33043329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flux quantization effects in InN nanowires.
    Richter T; Blömers C; Lüth H; Calarco R; Indlekofer M; Marso M; Schäpers T
    Nano Lett; 2008 Sep; 8(9):2834-8. PubMed ID: 18712932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.
    Lewis RB; Corfdir P; Küpers H; Flissikowski T; Brandt O; Geelhaar L
    Nano Lett; 2018 Apr; 18(4):2343-2350. PubMed ID: 29570304
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Localization/Quasi-delocalization transitions and quasi-mobility-edges in shell-doped nanowires.
    Zhong J; Stocks GM
    Nano Lett; 2006 Jan; 6(1):128-32. PubMed ID: 16402800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires.
    Kim W; Dubrovskii VG; Vukajlovic-Plestina J; Tütüncüoglu G; Francaviglia L; Güniat L; Potts H; Friedl M; Leran JB; Fontcuberta I Morral A
    Nano Lett; 2018 Jan; 18(1):49-57. PubMed ID: 29257895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant.
    Lewis RB; Corfdir P; Herranz J; Küpers H; Jahn U; Brandt O; Geelhaar L
    Nano Lett; 2017 Jul; 17(7):4255-4260. PubMed ID: 28654278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires.
    Arango YC; Huang L; Chen C; Avila J; Asensio MC; Grützmacher D; Lüth H; Lu JG; Schäpers T
    Sci Rep; 2016 Sep; 6():29493. PubMed ID: 27581169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal scanning probe and laser lithography for patterning nanowire based quantum devices.
    Shani L; Chaaban J; Nilson A; Clerc E; Menning G; Riggert C; Lueb P; Rossi M; Badawy G; Bakkers EPAM; Pribiag VS
    Nanotechnology; 2024 Apr; 35(25):. PubMed ID: 38467064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semiconductor-Ferromagnetic Insulator-Superconductor Nanowires: Stray Field and Exchange Field.
    Liu Y; Vaitiekėnas S; Martí-Sánchez S; Koch C; Hart S; Cui Z; Kanne T; Khan SA; Tanta R; Upadhyay S; Cachaza ME; Marcus CM; Arbiol J; Moler KA; Krogstrup P
    Nano Lett; 2020 Jan; 20(1):456-462. PubMed ID: 31769993
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dimension Engineering of High-Quality InAs Nanostructures on a Wafer Scale.
    Pan D; Wang JY; Zhang W; Zhu L; Su X; Fan F; Fu Y; Huang S; Wei D; Zhang L; Sui M; Yartsev A; Xu H; Zhao J
    Nano Lett; 2019 Mar; 19(3):1632-1642. PubMed ID: 30779588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.