BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 19320512)

  • 1. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem A; 2009 Apr; 113(13):3051-60. PubMed ID: 19320512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.
    Deflores LP; Ganim Z; Nicodemus RA; Tokmakoff A
    J Am Chem Soc; 2009 Mar; 131(9):3385-91. PubMed ID: 19256572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations and instantaneous normal-mode analysis of the vibrational relaxation of the C-H stretching modes of N-methylacetamide-d in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem A; 2010 Nov; 114(43):11450-61. PubMed ID: 20932051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of N-methylacetamide.
    DeFlores LP; Ganim Z; Ackley SF; Chung HS; Tokmakoff A
    J Phys Chem B; 2006 Sep; 110(38):18973-80. PubMed ID: 16986892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational relaxation pathways of AI and AII modes in N-methylacetamide clusters.
    Piatkowski L; Bakker HJ
    J Phys Chem A; 2010 Nov; 114(43):11462-70. PubMed ID: 20942502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Chem Phys; 2010 Jun; 132(22):224501. PubMed ID: 20550402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution.
    Bloem R; Dijkstra AG; Jansen Tl; Knoester J
    J Chem Phys; 2008 Aug; 129(5):055101. PubMed ID: 18698926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational relaxation pathways of amide I and amide II modes in N-methylacetamide.
    Piatkowski L; Bakker HJ
    J Chem Phys; 2012 Apr; 136(16):164504. PubMed ID: 22559493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational energy relaxation of isotopically labeled amide I modes in cytochrome c: theoretical investigation of vibrational energy relaxation rates and pathways.
    Fujisaki H; Straub JE
    J Phys Chem B; 2007 Oct; 111(41):12017-23. PubMed ID: 17887785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for analyzing the vibrational energy flow in biomolecules in solution.
    Soler MA; Bastida A; Farag MH; Zúñiga J; Requena A
    J Chem Phys; 2011 Nov; 135(20):204106. PubMed ID: 22128927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational energy relaxation of the amide I mode of N-methylacetamide in D₂O studied through Born-Oppenheimer molecular dynamics.
    Farag MH; Bastida A; Ruiz-López MF; Monard G; Ingrosso F
    J Phys Chem B; 2014 Jun; 118(23):6186-97. PubMed ID: 24836589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of carbonyl stretch mode energy in isolated and solvated N-methylacetamide: kinetic energy spectral density analyses.
    Jeon J; Cho M
    J Chem Phys; 2011 Dec; 135(21):214504. PubMed ID: 22149799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. I. Five-coordinate ferrous iron porphyrin model.
    Zhang Y; Fujisaki H; Straub JE
    J Chem Phys; 2009 Jan; 130(2):025102. PubMed ID: 19154056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution.
    Dijkstra AG; Jansen Tl; Bloem R; Knoester J
    J Chem Phys; 2007 Nov; 127(19):194505. PubMed ID: 18035890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution.
    Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S
    J Phys Chem B; 2012 Mar; 116(9):2969-80. PubMed ID: 22304000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational energy relaxation of azide in water.
    Li S; Schmidt JR; Skinner JL
    J Chem Phys; 2006 Dec; 125(24):244507. PubMed ID: 17199355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.