BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 19320512)

  • 21. Vibrational energy dynamics of glycine, N-methylacetamide, and benzoate anion in aqueous (D2O) solution.
    Fang Y; Shigeto S; Seong NH; Dlott DD
    J Phys Chem A; 2009 Jan; 113(1):75-84. PubMed ID: 19067563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.
    Madan B; Sokalingam S; Raghunathan G; Lee SG
    Proteins; 2014 Oct; 82(10):2812-22. PubMed ID: 25044033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.
    Dillman KL; Shelly KR; Beck WF
    J Phys Chem B; 2009 Apr; 113(17):6127-39. PubMed ID: 19348449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: linear and nonlinear vibrational spectra.
    Kwac K; Lee H; Cho M
    J Chem Phys; 2004 Jan; 120(3):1477-90. PubMed ID: 15268273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intermolecular charge flux as the origin of infrared intensity enhancement upon halogen-bond formation of the peptide group.
    Torii H
    J Chem Phys; 2010 Jul; 133(3):034504. PubMed ID: 20649334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. II. The nu(4) and nu(7) modes of iron-protoporphyrin IX and iron porphine.
    Zhang Y; Straub JE
    J Chem Phys; 2009 Mar; 130(9):095102. PubMed ID: 19275428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models.
    Zhang Y; Straub JE
    J Chem Phys; 2009 Jun; 130(21):215101. PubMed ID: 19508100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides.
    Dijkstra AG; Jansen Tl; Knoester J
    J Phys Chem B; 2011 May; 115(18):5392-401. PubMed ID: 21208013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models.
    Grahnen JA; Amunson KE; Kubelka J
    J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment.
    Fujisaki H; Stock G
    J Chem Phys; 2008 Oct; 129(13):134110. PubMed ID: 19045081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the temperature dependence of amide I frequencies of peptides in solution.
    Amunson KE; Kubelka J
    J Phys Chem B; 2007 Aug; 111(33):9993-8. PubMed ID: 17676791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonadiabatic effects on peptide vibrational dynamics induced by conformational changes.
    Antony J; Schmidt B; Schütte C
    J Chem Phys; 2005 Jan; 122(1):14309. PubMed ID: 15638661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling competitive interactions in proteins: vibrational spectroscopy of M+(n-methylacetamide)1(H2O)n=0-3, M=Na and K, in the 3 microm region.
    Miller DJ; Lisy JM
    J Phys Chem A; 2007 Dec; 111(49):12409-16. PubMed ID: 17696509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides.
    Measey T; Hagarman A; Eker F; Griebenow K; Schweitzer-Stenner R
    J Phys Chem B; 2005 Apr; 109(16):8195-205. PubMed ID: 16851958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatic DFT map for the complete vibrational amide band of NMA.
    Hayashi T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Nov; 109(43):9747-59. PubMed ID: 16833288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. II. Intracluster vibrational energy redistribution of the OH stretching vibration of hydrogen-bonded clusters.
    Kayano M; Ebata T; Yamada Y; Mikami N
    J Chem Phys; 2004 Apr; 120(16):7410-7. PubMed ID: 15267651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amide-I relaxation-induced hydrogen bond distortion: An intermediate in electron capture dissociation mass spectrometry of alpha-helical peptides?
    Pouthier V; Tsybin YO
    J Chem Phys; 2008 Sep; 129(9):095106. PubMed ID: 19044894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent dependence of the N-methylacetamide structure and force field.
    Andrushchenko V; Matejka P; Anderson DT; Kaminský J; Hornícek J; Paulson LO; Bour P
    J Phys Chem A; 2009 Sep; 113(35):9727-36. PubMed ID: 19663410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide.
    Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA
    Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.