BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1932091)

  • 1. Alkali cation effect on carbonyl-hemoglobin's and -myoglobin's conformer populations when exposed to freeze-concentration of their phosphate-buffered aqueous solutions.
    Astl G; Mayer E
    Biochim Biophys Acta; 1991 Oct; 1080(2):155-9. PubMed ID: 1932091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTIR spectroscopic study of the dynamics of conformational substates in hydrated carbonyl-myoglobin films via temperature dependence of the CO stretching band parameters.
    Mayer E
    Biophys J; 1994 Aug; 67(2):862-73. PubMed ID: 7948699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limits of cryofixation as seen by Fourier transform infrared spectra of metmyoglobin azide and carbonyl hemoglobin in vitrified and freeze-concentrated aqueous solution.
    Mayer E; Astl G
    Ultramicroscopy; 1992 Sep; 45(2):185-97. PubMed ID: 1440981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Formulation and Process Parameters on the Disproportionation of Indomethacin Sodium in Buffered Lyophilized Formulations.
    Koranne S; Thakral S; Suryanarayanan R
    Pharm Res; 2018 Jan; 35(1):21. PubMed ID: 29305664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of proteins encapsulated in silica sol-gel glasses studied with IR vibrational echo spectroscopy.
    Massari AM; Finkelstein IJ; Fayer MD
    J Am Chem Soc; 2006 Mar; 128(12):3990-7. PubMed ID: 16551107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared spectroscopy.
    Moore JN; Hansen PA; Hochstrasser RM
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5062-6. PubMed ID: 3393531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering.
    Sonje J; Thakral S; Krueger S; Suryanarayanan R
    Mol Pharm; 2021 Dec; 18(12):4459-4474. PubMed ID: 34709831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Rodríguez-Hornedo N; Amidon GL; Carpenter JF
    Arch Biochem Biophys; 2000 Dec; 384(2):398-406. PubMed ID: 11368330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt precipitation during the freeze-concentration of phosphate buffer solutions.
    Murase N; Franks F
    Biophys Chem; 1989 Nov; 34(3):293-300. PubMed ID: 2611352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared analysis of ligand- and oxidation-induced conformational changes in hemoglobins and myoglobins.
    Dong A; Huang P; Caughey B; Caughey WS
    Arch Biochem Biophys; 1995 Feb; 316(2):893-8. PubMed ID: 7864648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration.
    Varshney DB; Kumar S; Shalaev EY; Sundaramurthi P; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2007 Mar; 24(3):593-604. PubMed ID: 17245648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.
    Maity H; Karkaria C; Davagnino J
    Int J Pharm; 2009 Aug; 378(1-2):122-35. PubMed ID: 19505546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picosecond phase grating spectroscopy of hemoglobin and myoglobin: energetics and dynamics of global protein motion.
    Richard L; Genberg L; Deak J; Chiu HL; Miller RJ
    Biochemistry; 1992 Nov; 31(44):10703-15. PubMed ID: 1420186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?
    Vetráková Ľ; Vykoukal V; Heger D
    Int J Pharm; 2017 Sep; 530(1-2):316-325. PubMed ID: 28779984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfhydryl groups in hemoglobin. A new molecular probe at the alpha1 beta 1 interface studied by Fourier transform infrared spectroscopy.
    Bare GH; Alben JO; Bromberg PA
    Biochemistry; 1975 Apr; 14(8):1578-83. PubMed ID: 235959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.