These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19321421)
1. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Duanmu D; Miller AR; Horken KM; Weeks DP; Spalding MH Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5990-5. PubMed ID: 19321421 [TBL] [Abstract][Full Text] [Related]
2. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Yamano T; Sato E; Iguchi H; Fukuda Y; Fukuzawa H Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7315-20. PubMed ID: 26015566 [TBL] [Abstract][Full Text] [Related]
3. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Gao H; Wang Y; Fei X; Wright DA; Spalding MH Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294 [TBL] [Abstract][Full Text] [Related]
4. Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Wang Y; Spalding MH Plant Physiol; 2014 Dec; 166(4):2040-50. PubMed ID: 25336519 [TBL] [Abstract][Full Text] [Related]
5. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Wang L; Yamano T; Takane S; Niikawa Y; Toyokawa C; Ozawa SI; Tokutsu R; Takahashi Y; Minagawa J; Kanesaki Y; Yoshikawa H; Fukuzawa H Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12586-12591. PubMed ID: 27791081 [TBL] [Abstract][Full Text] [Related]
6. Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2. Duanmu D; Spalding MH Photosynth Res; 2011 Sep; 109(1-3):123-32. PubMed ID: 21409559 [TBL] [Abstract][Full Text] [Related]
7. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Wang Y; Duanmu D; Spalding MH Photosynth Res; 2011 Sep; 109(1-3):115-22. PubMed ID: 21409558 [TBL] [Abstract][Full Text] [Related]
8. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195 [TBL] [Abstract][Full Text] [Related]
10. Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO Toyokawa C; Yamano T; Fukuzawa H Plant Physiol; 2020 Apr; 182(4):1883-1893. PubMed ID: 32041908 [TBL] [Abstract][Full Text] [Related]
11. Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. Rolland N; Dorne AJ; Amoroso G; Sültemeyer DF; Joyard J; Rochaix JD EMBO J; 1997 Nov; 16(22):6713-26. PubMed ID: 9362486 [TBL] [Abstract][Full Text] [Related]
12. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228 [TBL] [Abstract][Full Text] [Related]
13. A pyrenoid-localized protein SAGA1 is necessary for Ca Shimamura D; Yamano T; Niikawa Y; Hu D; Fukuzawa H Photosynth Res; 2023 May; 156(2):181-192. PubMed ID: 36656499 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. Machingura MC; Bajsa-Hirschel J; Laborde SM; Schwartzenburg JB; Mukherjee B; Mukherjee A; Pollock SV; Förster B; Price GD; Moroney JV J Exp Bot; 2017 Jun; 68(14):3879-3890. PubMed ID: 28633328 [TBL] [Abstract][Full Text] [Related]
15. Structure and function of LCI1: a plasma membrane CO Kono A; Chou TH; Radhakrishnan A; Bolla JR; Sankar K; Shome S; Su CC; Jernigan RL; Robinson CV; Yu EW; Spalding MH Plant J; 2020 Jun; 102(6):1107-1126. PubMed ID: 32168387 [TBL] [Abstract][Full Text] [Related]
16. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii. Wang Y; Spalding MH Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10110-5. PubMed ID: 16777959 [TBL] [Abstract][Full Text] [Related]
17. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Yamano T; Fukuzawa H J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331 [TBL] [Abstract][Full Text] [Related]
18. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. Yamano T; Toyokawa C; Shimamura D; Matsuoka T; Fukuzawa H Plant Physiol; 2022 Feb; 188(2):1081-1094. PubMed ID: 34791500 [TBL] [Abstract][Full Text] [Related]
19. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Price GD Photosynth Res; 2011 Sep; 109(1-3):47-57. PubMed ID: 21359551 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Wang L; Yamano T; Kajikawa M; Hirono M; Fukuzawa H Photosynth Res; 2014 Sep; 121(2-3):175-84. PubMed ID: 24549931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]