These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19321422)

  • 21. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations.
    Socher E; Sticht H
    J Phys Chem B; 2016 Nov; 120(46):11845-11855. PubMed ID: 27787971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
    Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR
    Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function.
    Wang W; Rasmussen T; Harding AJ; Booth NA; Booth IR; Naismith JH
    J Mol Biol; 2012 Jan; 415(3):538-46. PubMed ID: 22138344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance.
    Zhang M; Lin S; Song X; Liu J; Fu Y; Ge X; Fu X; Chang Z; Chen PR
    Nat Chem Biol; 2011 Sep; 7(10):671-7. PubMed ID: 21892184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-denatured small heat shock protein HdeA from
    Miyawaki S; Uemura Y; Hongo K; Kawata Y; Mizobata T
    J Biol Chem; 2019 Feb; 294(5):1590-1601. PubMed ID: 30530490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining the structure of the substrate-free state of the DnaK molecular chaperone.
    Swain JF; Sivendran R; Gierasch LM
    Biochem Soc Symp; 2001; (68):69-82. PubMed ID: 11573348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria.
    Gajiwala KS; Burley SK
    J Mol Biol; 2000 Jan; 295(3):605-12. PubMed ID: 10623550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of structural plasticity in chaperone HdeA activity are revealed by
    Zhai Z; Wu Q; Zheng W; Liu M; Pielak GJ; Li C
    Chem Sci; 2016 Mar; 7(3):2222-2228. PubMed ID: 29910910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.
    Xu Y; Schmitt S; Tang L; Jakob U; Fitzgerald MC
    Biochemistry; 2010 Feb; 49(6):1346-53. PubMed ID: 20073505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligomerization of a molecular chaperone modulates its activity.
    Saio T; Kawagoe S; Ishimori K; Kalodimos CG
    Elife; 2018 May; 7():. PubMed ID: 29714686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures.
    Sastry MS; Quigley PM; Hol WG; Baneyx F
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8587-92. PubMed ID: 15173574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of disulfide from acid stress chaperone HdeA does not wholly eliminate structure or function at low pH.
    Aguirre-Cardenas MI; Geddes-Buehre DH; Crowhurst KA
    Biochem Biophys Rep; 2021 Sep; 27():101064. PubMed ID: 34307907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural plasticity of peptidyl-prolyl isomerase sFkpA is a key to its chaperone function as revealed by solution NMR.
    Hu K; Galius V; Pervushin K
    Biochemistry; 2006 Oct; 45(39):11983-91. PubMed ID: 17002297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R; Edinger N; Rimon O; Reichmann D
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational selection in substrate recognition by Hsp70 chaperones.
    Marcinowski M; Rosam M; Seitz C; Elferich J; Behnke J; Bello C; Feige MJ; Becker CF; Antes I; Buchner J
    J Mol Biol; 2013 Feb; 425(3):466-74. PubMed ID: 23207294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Trigger Factor Chaperone Encapsulates and Stabilizes Partial Folds of Substrate Proteins.
    Singhal K; Vreede J; Mashaghi A; Tans SJ; Bolhuis PG
    PLoS Comput Biol; 2015 Oct; 11(10):e1004444. PubMed ID: 26512985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for the antifolding activity of a molecular chaperone.
    Huang C; Rossi P; Saio T; Kalodimos CG
    Nature; 2016 Sep; 537(7619):202-206. PubMed ID: 27501151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues.
    Xu X; Wang S; Hu YX; McKay DB
    J Mol Biol; 2007 Oct; 373(2):367-81. PubMed ID: 17825319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins.
    Sluchanko NN; Gusev NB
    FEBS J; 2017 May; 284(9):1279-1295. PubMed ID: 27973707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.