BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19321497)

  • 21. Measuring TREX1 and TREX2 exonuclease activities.
    Hemphill WO; Perrino FW
    Methods Enzymol; 2019; 625():109-133. PubMed ID: 31455522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease.
    Grieves JL; Fye JM; Harvey S; Grayson JM; Hollis T; Perrino FW
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5117-22. PubMed ID: 25848017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease.
    Lehtinen DA; Harvey S; Mulcahy MJ; Hollis T; Perrino FW
    J Biol Chem; 2008 Nov; 283(46):31649-56. PubMed ID: 18805785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I.
    Shi Y; Hellinga HW; Beese LS
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6010-6015. PubMed ID: 28533382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis.
    Yang W; Chen WY; Wang H; Ho JW; Huang JD; Woo PC; Lau SK; Yuen KY; Zhang Q; Zhou W; Bartlam M; Watt RM; Rao Z
    Nucleic Acids Res; 2011 Dec; 39(22):9803-19. PubMed ID: 21893587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of TatD exonuclease in DNA repair.
    Chen YC; Li CL; Hsiao YY; Duh Y; Yuan HS
    Nucleic Acids Res; 2014; 42(16):10776-85. PubMed ID: 25114049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease.
    Ceska TA; Sayers JR; Stier G; Suck D
    Nature; 1996 Jul; 382(6586):90-3. PubMed ID: 8657312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural elucidation of the binding and inhibitory properties of lanthanide (III) ions at the 3'-5' exonucleolytic active site of the Klenow fragment.
    Brautigam CA; Aschheim K; Steitz TA
    Chem Biol; 1999 Dec; 6(12):901-8. PubMed ID: 10631518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition and processing of double-stranded DNA by ExoX, a distributive 3'-5' exonuclease.
    Wang T; Sun HL; Cheng F; Zhang XE; Bi L; Jiang T
    Nucleic Acids Res; 2013 Aug; 41(15):7556-65. PubMed ID: 23771145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TREX through Cutaneous Health and Disease.
    Mathers AR
    J Invest Dermatol; 2016 Dec; 136(12):2337-2339. PubMed ID: 27884288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for DNA recognition and nuclease processing by the Mre11 homologue SbcD in double-strand breaks repair.
    Liu S; Tian LF; Liu YP; An XM; Tang Q; Yan XX; Liang DC
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):299-309. PubMed ID: 24531464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Escherichia coli exonuclease I in complex with thymidine 5'-monophosphate.
    Busam RD
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):206-10. PubMed ID: 18219121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates.
    Brautigam CA; Steitz TA
    J Mol Biol; 1998 Mar; 277(2):363-77. PubMed ID: 9514742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for DNA 5´-end resection by RecJ.
    Cheng K; Xu H; Chen X; Wang L; Tian B; Zhao Y; Hua Y
    Elife; 2016 Apr; 5():e14294. PubMed ID: 27058167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The TREX1 C-terminal region controls cellular localization through ubiquitination.
    Orebaugh CD; Fye JM; Harvey S; Hollis T; Wilkinson JC; Perrino FW
    J Biol Chem; 2013 Oct; 288(40):28881-92. PubMed ID: 23979357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutagenesis of conserved lysine residues in bacteriophage T5 5'-3' exonuclease suggests separate mechanisms of endo-and exonucleolytic cleavage.
    Garforth SJ; Ceska TA; Suck D; Sayers JR
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):38-43. PubMed ID: 9874768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus.
    Woo EJ; Lee S; Cha H; Park JT; Yoon SM; Song HN; Park KH
    J Biol Chem; 2008 Oct; 283(42):28641-8. PubMed ID: 18703518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3'-5' exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting.
    Lam WC; Thompson EH; Potapova O; Sun XC; Joyce CM; Millar DP
    Biochemistry; 2002 Mar; 41(12):3943-51. PubMed ID: 11900537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1.25 Å resolution structure of an RNA 20-mer that binds to the TREX2 complex.
    Valkov E; Stewart M
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1318-21. PubMed ID: 26457524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.