These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19321654)

  • 1. Priming and backward influences in the human brain: processing interactions during the stroop interference effect.
    Appelbaum LG; Meyerhoff KL; Woldorff MG
    Cereb Cortex; 2009 Nov; 19(11):2508-21. PubMed ID: 19321654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing.
    Krebs RM; Boehler CN; Appelbaum LG; Woldorff MG
    PLoS One; 2013; 8(1):e53894. PubMed ID: 23326530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulations of the executive control network by stimulus onset asynchrony in a Stroop task.
    Coderre EL; van Heuven WJ
    BMC Neurosci; 2013 Jul; 14():79. PubMed ID: 23902451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: an ERP study.
    Szucs D; Soltész F
    Brain Res; 2008 Jan; 1190():143-58. PubMed ID: 18076868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-modal stimulus conflict: the behavioral effects of stimulus input timing in a visual-auditory Stroop task.
    Donohue SE; Appelbaum LG; Park CJ; Roberts KC; Woldorff MG
    PLoS One; 2013; 8(4):e62802. PubMed ID: 23638149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.
    Mager R; Meuth SG; Kräuchi K; Schmidlin M; Müller-Spahn F; Falkenstein M
    J Cogn Neurosci; 2009 Nov; 21(11):2185-94. PubMed ID: 18855548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
    van den Berg B; Krebs RM; Lorist MM; Woldorff MG
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):561-77. PubMed ID: 24820263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic allocation of attention reduces temporally predictable stimulus conflict.
    Appelbaum LG; Boehler CN; Won R; Davis L; Woldorff MG
    J Cogn Neurosci; 2012 Sep; 24(9):1834-48. PubMed ID: 22360623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict.
    Donohue SE; Todisco AE; Woldorff MG
    J Cogn Neurosci; 2013 Apr; 25(4):623-35. PubMed ID: 23249355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological measures of conflict detection and resolution in the Stroop task.
    Coderre E; Conklin K; van Heuven WJ
    Brain Res; 2011 Sep; 1413():51-9. PubMed ID: 21840503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and electrophysiological investigation of semantic and response conflict in the Stroop task.
    Augustinova M; Silvert L; Ferrand L; Llorca PM; Flaudias V
    Psychon Bull Rev; 2015 Apr; 22(2):543-9. PubMed ID: 25092389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus and response conflict in the color-word Stroop task: a combined electro-myography and event-related potential study.
    Szucs D; Soltész F
    Brain Res; 2010 Apr; 1325():63-76. PubMed ID: 20153298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does response modality influence conflict? Modelling vocal and manual response Stroop interference.
    Fennell A; Ratcliff R
    J Exp Psychol Learn Mem Cogn; 2019 Nov; 45(11):2098-2119. PubMed ID: 30802093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory conflict processing: behavioral and electrophysiologic manifestations of the stroop effect.
    Henkin Y; Yaar-Soffer Y; Gilat S; Muchnik C
    J Am Acad Audiol; 2010; 21(7):474-86. PubMed ID: 20807483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stroop matching task: role of feature selection and temporal modulation.
    David IA; Volchan E; Vila J; Keil A; de Oliveira L; Faria-Júnior AJ; Perakakis P; Dias EC; Mocaiber I; Pereira MG; Machado-Pinheiro W
    Exp Brain Res; 2011 Feb; 208(4):595-605. PubMed ID: 21161193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of regular physical activity with neuroelectric indices of interference processing in young adults.
    Aly M; Kojima H
    Psychophysiology; 2020 Dec; 57(12):e13674. PubMed ID: 33460156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of proactive and reactive cognitive control processes in the human brain.
    Appelbaum LG; Boehler CN; Davis LA; Won RJ; Woldorff MG
    J Cogn Neurosci; 2014 May; 26(5):1021-38. PubMed ID: 24345171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common and specific loci of Stroop effects in vocal and manual tasks, revealed by event-related brain potentials and posthypnotic suggestions.
    Zahedi A; Abdel Rahman R; Stürmer B; Sommer W
    J Exp Psychol Gen; 2019 Sep; 148(9):1575-1594. PubMed ID: 30730196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ERP investigation of the working memory stroop effect.
    Wang W; Qi M; Gao H
    Neuropsychologia; 2021 Feb; 152():107752. PubMed ID: 33453265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.