BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 19321926)

  • 1. Assessment of SAR in the tissues near a cochlear implant exposed to radiofrequency electromagnetic fields.
    Sibella F; Parazzini M; Paglialonga A; Ravazzani P
    Phys Med Biol; 2009 Apr; 54(8):N135-41. PubMed ID: 19321926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the exposure to WLAN frequencies of a head model with a cochlear implant.
    Parazzini M; Sibella F; Paglialonga A; Ravazzani P
    Bioelectromagnetics; 2010 Oct; 31(7):546-55. PubMed ID: 20683910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of mobile phones with superficial passive metallic implants.
    Virtanen H; Huttunen J; Toropainen A; Lappalainen R
    Phys Med Biol; 2005 Jun; 50(11):2689-700. PubMed ID: 15901963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field.
    Virtanen H; Keshvari J; Lappalainen R
    Phys Med Biol; 2007 Mar; 52(5):1221-36. PubMed ID: 17301450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of SAR and thermal changes near a cochlear implant system for mobile phone type exposures.
    McIntosh RL; Iskra S; McKenzie RJ; Chambers J; Metzenthen B; Anderson V
    Bioelectromagnetics; 2008 Jan; 29(1):71-80. PubMed ID: 17902159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implanted spherical head model exposed to electromagnetic fields at a mobile communication frequency.
    Reyhani SM; Ludwig SA
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2092-101. PubMed ID: 17019874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the internal fields distribution in human inner hearing system exposed to 900 and 1800 MHz.
    Parazzini M; Tognola G; Franzoni C; Grandori F; Ravazzani P
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):39-48. PubMed ID: 17260854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6,000 MHz.
    Christ A; Samaras T; Klingenböck A; Kuster N
    Phys Med Biol; 2006 Oct; 51(19):4951-65. PubMed ID: 16985280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical evaluation of SAR distribution and temperature changes around a metallic plate in the head of a RF exposed worker.
    McIntosh RL; Anderson V; McKenzie RJ
    Bioelectromagnetics; 2005 Jul; 26(5):377-88. PubMed ID: 15924346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.
    Keshvari J; Lang S
    Phys Med Biol; 2005 Sep; 50(18):4355-69. PubMed ID: 16148398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.
    de Salles AA; Bulla G; Rodriguez CE
    Electromagn Biol Med; 2006; 25(4):349-60. PubMed ID: 17178592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pierced metallic objects on SAR distributions at 900 MHz.
    Fayos-Fernandez J; Arranz-Faz C; Martinez-Gonzalez AM; Sanchez-Hernandez D
    Bioelectromagnetics; 2006 Jul; 27(5):337-53. PubMed ID: 16724318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.
    Keshvari J; Keshvari R; Lang S
    Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAR distribution in human beings when using body-worn RF transmitters.
    Christ A; Samaras T; Neufeld E; Klingenböck A; Kuster N
    Radiat Prot Dosimetry; 2007; 124(1):6-14. PubMed ID: 17652110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric dependence of SAR on permittivity values in a man model.
    Gajsek P; Hurt WD; Ziriax JM; Mason PA
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1169-77. PubMed ID: 11585041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of subgridding in SAR computation for the cochlea.
    Kopecký R; Hamnerius Y; Persson M
    Bioelectromagnetics; 2005 Sep; 26(6):520-2. PubMed ID: 16108043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.
    Wake K; Varsier N; Watanabe S; Taki M; Wiart J; Mann S; Deltour I; Cardis E
    Phys Med Biol; 2009 Oct; 54(19):5695-706. PubMed ID: 19724098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume-averaged SAR in adult and child head models when using mobile phones: a computational study with detailed CAD-based models of commercial mobile phones.
    Keshvari J; Heikkilä T
    Prog Biophys Mol Biol; 2011 Dec; 107(3):439-42. PubMed ID: 22005524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.
    Schmid G; Uberbacher R; Samaras T; Tschabitscher M; Mazal PR
    Phys Med Biol; 2007 Sep; 52(17):5457-68. PubMed ID: 17762098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz.
    Joó E; Szász A; Szendrö P
    Electromagn Biol Med; 2006; 25(2):103-12. PubMed ID: 16771299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.