These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19322391)

  • 1. Biological Control of the Grasshopper Hesperotettix viridis pratensis by the Nematode Mermis nigrescens.
    Mongkolkiti S; Hosford RM
    J Nematol; 1971 Oct; 3(4):356-63. PubMed ID: 19322391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific competition among grasshoppers and their effect on plant abundance in experimental field environments.
    Ritchie ME; Tilman D
    Oecologia; 1992 Apr; 89(4):524-532. PubMed ID: 28311883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycosis inhibits cannibalism by Melanoplus sanguinipes, M. differentialis, Schistocerca americana, and Anabrus simplex.
    Jaronski ST
    J Insect Sci; 2013; 13():122. PubMed ID: 24786183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host plant-associated genetic differentiation in the snakeweed grasshopper, Hesperotettix viridis (Orthoptera: Acrididae).
    Sword GA; Joern A; Senior LB
    Mol Ecol; 2005 Jun; 14(7):2197-205. PubMed ID: 15910337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of host suitability on the range of grasshopper species utilized by Blaesoxipha atlanis (Diptera: Sarcophagidae) in the field.
    Danyk T; Mackauer M; Johnson DL
    Bull Entomol Res; 2005 Dec; 95(6):571-8. PubMed ID: 16336704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Ecological Dynamics of a Major Agricultural Pest Insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A Cohort-Based Approach Incorporating the Effects of Weather on Grasshopper Development and Abundance.
    Olfert O; Weiss RM; Giffen D; Vankosky MA
    J Econ Entomol; 2021 Feb; 114(1):122-130. PubMed ID: 33179743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable versus unstable orientations of sex chromosomes in two grasshopper species.
    Ault JG
    Chromosoma; 1986; 93(4):298-304. PubMed ID: 3698743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genome scan detects host-related divergent selection in the grasshopper Hesperotettix viridis.
    Apple JL; Grace T; Joern A; St Amand P; Wisely SM
    Mol Ecol; 2010 Sep; 19(18):4012-28. PubMed ID: 20735740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.
    Drolet BS; Stuart MA; Derner JD
    Appl Environ Microbiol; 2009 May; 75(10):3029-33. PubMed ID: 19286779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae).
    Smith DI; Lockwood JA
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):377-82. PubMed ID: 12712298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillations of oocyte nuclei in the ovarioles of the grasshopper Melanoplus differentialis differentialis (Orthoptera, Acrididae).
    TAHMISIAN TN; BRUES AM; SVIHLA G; SLIFER EH
    Exp Cell Res; 1955 Aug; 9(1):135-8. PubMed ID: 13241516
    [No Abstract]   [Full Text] [Related]  

  • 12. Efficacy of Two Entomopathogenic Fungi, Metarhizium brunneum, Strain F52 Alone and Combined with Paranosema locustae against the Migratory Grasshopper, Melanoplus sanguinipes, under Laboratory and Greenhouse Conditions.
    Dakhel WH; Latchininsky AV; Jaronski ST
    Insects; 2019 Mar; 10(4):. PubMed ID: 30935086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of two Montana grasshopper populations: relationships among weather, food abundance and intraspecific competition.
    Belovsky GE; Slade JB
    Oecologia; 1995 Mar; 101(3):383-396. PubMed ID: 28307061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A preliminary report on certain pigments in the developing egg of the grasshopper, Melanoplus differentialis.
    BURGESS LE
    Anat Rec; 1946 Dec; 96(4):586. PubMed ID: 20341479
    [No Abstract]   [Full Text] [Related]  

  • 15. Electron microscope observations on the submicroscopic vesicular component of the subesophageal body and pericardial cells of the grasshopper, Melanoplus differentialis differentialis (Thomas).
    KESSEL RG
    Exp Cell Res; 1961 Jan; 22():108-19. PubMed ID: 13752726
    [No Abstract]   [Full Text] [Related]  

  • 16. A preliminary quantitative study of pterine pigment in the developing egg of the grasshopper, Melanoplus differentialis.
    BURGESS LE
    Arch Biochem; 1949 Feb; 20(2):347-55. PubMed ID: 18108929
    [No Abstract]   [Full Text] [Related]  

  • 17. Laboratory and field evaluations of imidacloprid against Melanoplus sanguinipes (Orthoptera: Acrididae) on small grains.
    Tharp CI; Johnson GD; Onsager JA
    J Econ Entomol; 2000 Apr; 93(2):293-9. PubMed ID: 10826175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative biological effectiveness of fast neutrons, gamma rays, x-rays on grasshopper nymph ovarioles; (Melanoplus differentialis).
    TAHMISIAN TN; VOGEL HH
    Proc Soc Exp Biol Med; 1953 Dec; 84(3):538-43. PubMed ID: 13134208
    [No Abstract]   [Full Text] [Related]  

  • 19. TREHALOSE: OCCURRENCE AND RELATION TO EGG DIAPAUSE AND ACTIVE TRANSPORT IN THE DIFFERENTIAL GRASSHOPPER, MELANOPLUS DIFFERENTIALIS.
    RANDALL DD; DERR RF
    J Insect Physiol; 1965 Mar; 11():329-35. PubMed ID: 14330764
    [No Abstract]   [Full Text] [Related]  

  • 20. The spermatid cell membrane in Melanoplus differentialis.
    ROTH LE
    J Biophys Biochem Cytol; 1957 Sep; 3(5):816-9. PubMed ID: 13475397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.