These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 19322523)

  • 1. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.
    Liang Y; Sarkany N; Cui Y
    Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.
    Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL
    Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B
    Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.
    Feng Y; Li C; Zhang D
    Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.
    Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G
    Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production.
    Shen Y; Yuan W; Pei Z; Mao E
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1674-84. PubMed ID: 19424668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques.
    Patiño R; Janssen M; von Stockar U
    Biotechnol Bioeng; 2007 Mar; 96(4):757-67. PubMed ID: 16952149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol.
    O'Grady J; Morgan JA
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):121-5. PubMed ID: 20976474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris.
    Griffiths MJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.
    Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F
    J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-stage cultivation process for the growth enhancement of Chlorella vulgaris.
    Yen HW; Chang JT
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1797-801. PubMed ID: 23411876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.
    Aguirre AM; Bassi A
    Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.
    Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G
    Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.