BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1012 related articles for article (PubMed ID: 19322798)

  • 1. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy.
    Luo Z; Yang W; Peng A; Ma Y; Fu H; Yao J
    J Phys Chem A; 2009 Mar; 113(11):2467-72. PubMed ID: 19216546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced vibrational microspectroscopy of fulvic acid micelles.
    Alvarez-Puebla RA; Garrido JJ; Aroca RF
    Anal Chem; 2004 Dec; 76(23):7118-25. PubMed ID: 15571368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation.
    Feng S; Lin J; Cheng M; Li YZ; Chen G; Huang Z; Yu Y; Chen R; Zeng H
    Appl Spectrosc; 2009 Oct; 63(10):1089-94. PubMed ID: 19843357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ
    Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
    Yokota Y; Ueno K; Misawa H
    Chem Commun (Camb); 2011 Mar; 47(12):3505-7. PubMed ID: 21318204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis.
    Lee KY; Hwang J; Lee YW; Kim J; Han SW
    J Colloid Interface Sci; 2007 Dec; 316(2):476-81. PubMed ID: 17727872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules.
    Güzel R; Ustündağ Z; Ekşi H; Keskin S; Taner B; Durgun ZG; Turan AA; Solak AO
    J Colloid Interface Sci; 2010 Nov; 351(1):35-42. PubMed ID: 20701922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L; Xu QH
    Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of molecular orientation and packing density in a dsDNA self-assembled monolayer observable with surface-enhanced Raman spectroscopy.
    Barhoumi A; Zhang D; Halas NJ
    J Am Chem Soc; 2008 Oct; 130(43):14040-1. PubMed ID: 18834128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.