BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 19322842)

  • 1. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide.
    Pujals S; Bastús NG; Pereiro E; López-Iglesias C; Puntes VF; Kogan MJ; Giralt E
    Chembiochem; 2009 Apr; 10(6):1025-31. PubMed ID: 19322842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size.
    Oh E; Delehanty JB; Sapsford KE; Susumu K; Goswami R; Blanco-Canosa JB; Dawson PE; Granek J; Shoff M; Zhang Q; Goering PL; Huston A; Medintz IL
    ACS Nano; 2011 Aug; 5(8):6434-48. PubMed ID: 21774456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional gold nanoparticle-peptide complexes as cell-targeting agents.
    Sun L; Liu D; Wang Z
    Langmuir; 2008 Sep; 24(18):10293-7. PubMed ID: 18715022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced immobilization of hexa-arginine-tagged esterase on gold nanoparticles using mixed self-assembled monolayers.
    Jeong J; Lee CS; Chung SJ; Chung BH
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):165-9. PubMed ID: 19639343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils.
    Olmedo I; Araya E; Sanz F; Medina E; Arbiol J; Toledo P; Alvarez-Lueje A; Giralt E; Kogan MJ
    Bioconjug Chem; 2008 Jun; 19(6):1154-63. PubMed ID: 18510352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acyl moieties: improving Pro-rich peptide uptake inside HeLa cells.
    Fernández-Carneado J; Kogan MJ; Van Mau N; Pujals S; López-Iglesias C; Heitz F; Giralt E
    J Pept Res; 2005 Jun; 65(6):580-90. PubMed ID: 15885117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering.
    Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J
    Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake.
    Li G; Li D; Zhang L; Zhai J; Wang E
    Chemistry; 2009 Sep; 15(38):9868-73. PubMed ID: 19697373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line.
    Hosta-Rigau L; Olmedo I; Arbiol J; Cruz LJ; Kogan MJ; Albericio F
    Bioconjug Chem; 2010 Jun; 21(6):1070-8. PubMed ID: 20476781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled aggregation of functionalized gold nanoparticles with a novel conjugated oligomer.
    Liu X; He X; Jiu T; Yuan M; Xu J; Lv J; Liu H; Li Y
    Chemphyschem; 2007 Apr; 8(6):906-12. PubMed ID: 17387682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles conjugated to [Tyr3]octreotide peptide.
    Surujpaul PP; Gutiérrez-Wing C; Ocampo-García B; Ramírez Fde M; Arteaga de Murphy C; Pedraza-López M; Camacho-López MA; Ferro-Flores G
    Biophys Chem; 2008 Dec; 138(3):83-90. PubMed ID: 18819743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water.
    Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI
    Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors.
    Maus L; Dick O; Bading H; Spatz JP; Fiammengo R
    ACS Nano; 2010 Nov; 4(11):6617-28. PubMed ID: 20939520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.
    Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R
    Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear penetration of surface functionalized gold nanoparticles.
    Gu YJ; Cheng J; Lin CC; Lam YW; Cheng SH; Wong WT
    Toxicol Appl Pharmacol; 2009 Jun; 237(2):196-204. PubMed ID: 19328820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles for molecular diagnostics.
    Radwan SH; Azzazy HM
    Expert Rev Mol Diagn; 2009 Jul; 9(5):511-24. PubMed ID: 19580434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells.
    Zhang Z; Jia J; Lai Y; Ma Y; Weng J; Sun L
    Bioorg Med Chem; 2010 Aug; 18(15):5528-34. PubMed ID: 20621495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the surface charge on peptide-gold nanoparticle conjugates by force spectroscopy.
    Guerrero AR; Caballero L; Adeva A; Melo F; Kogan MJ
    Langmuir; 2010 Jul; 26(14):12026-32. PubMed ID: 20557062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.