These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19323189)
1. Set-asides can be better climate investment than corn ethanol. Piñeiro G; Jobbágy EG; Baker J; Murray BC; Jackson RB Ecol Appl; 2009 Mar; 19(2):277-82. PubMed ID: 19323189 [TBL] [Abstract][Full Text] [Related]
2. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
3. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover]. Tian W; Liao C; Li L; Zhao D Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036 [TBL] [Abstract][Full Text] [Related]
4. The Renewable Fuel Standard May Limit Overall Greenhouse Gas Savings by Corn Stover-Based Cellulosic Biofuels in the U.S. Midwest: Effects of the Regulatory Approach on Projected Emissions. Kim S; Dale BE; Zhang X; Jones CD; Reddy AD; Izaurralde RC Environ Sci Technol; 2019 Mar; 53(5):2288-2294. PubMed ID: 30730719 [TBL] [Abstract][Full Text] [Related]
5. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Returns to Land and Greenhouse Gas Savings from Producing Energy Crops on Conservation Reserve Program Land. Chen L; Blanc-Betes E; Hudiburg TW; Hellerstein D; Wallander S; DeLucia EH; Khanna M Environ Sci Technol; 2021 Jan; 55(2):1301-1309. PubMed ID: 33410666 [TBL] [Abstract][Full Text] [Related]
7. Cost of abating greenhouse gas emissions with cellulosic ethanol. Dwivedi P; Wang W; Hudiburg T; Jaiswal D; Parton W; Long S; DeLucia E; Khanna M Environ Sci Technol; 2015 Feb; 49(4):2512-22. PubMed ID: 25588032 [TBL] [Abstract][Full Text] [Related]
8. [Carbon balance analysis of corn fuel ethanol life cycle]. Zhang ZS; Yuan XG Huan Jing Ke Xue; 2006 Apr; 27(4):616-9. PubMed ID: 16767974 [TBL] [Abstract][Full Text] [Related]
9. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Dunn JB; Mueller S; Kwon HY; Wang MQ Biotechnol Biofuels; 2013 Apr; 6(1):51. PubMed ID: 23575438 [TBL] [Abstract][Full Text] [Related]
10. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses. Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048 [TBL] [Abstract][Full Text] [Related]
11. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. McGill BM; Hamilton SK; Millar N; Robertson GP Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393 [TBL] [Abstract][Full Text] [Related]
12. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Campbell JE; Lobell DB; Field CB Science; 2009 May; 324(5930):1055-7. PubMed ID: 19423776 [TBL] [Abstract][Full Text] [Related]
13. Environmental implications of municipal solid waste-derived ethanol. Kalogo Y; Habibi S; MacLean HL; Joshi SV Environ Sci Technol; 2007 Jan; 41(1):35-41. PubMed ID: 17265924 [TBL] [Abstract][Full Text] [Related]
14. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Kim H; Kim S; Dale BE Environ Sci Technol; 2009 Feb; 43(3):961-7. PubMed ID: 19245043 [TBL] [Abstract][Full Text] [Related]
15. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Gelfand I; Zenone T; Jasrotia P; Chen J; Hamilton SK; Robertson GP Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13864-9. PubMed ID: 21825117 [TBL] [Abstract][Full Text] [Related]
16. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783 [TBL] [Abstract][Full Text] [Related]
17. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Gaunt JL; Lehmann J Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980 [TBL] [Abstract][Full Text] [Related]
18. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock. Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820 [TBL] [Abstract][Full Text] [Related]
19. Simulated Biomass Sorghum GHG Reduction Potential is Similar to Maize. Kent J; Hartman MD; Lee DK; Hudiburg T Environ Sci Technol; 2020 Oct; 54(19):12456-12466. PubMed ID: 32856896 [TBL] [Abstract][Full Text] [Related]
20. Climate mitigation and the future of tropical landscapes. Thomson AM; Calvin KV; Chini LP; Hurtt G; Edmonds JA; Bond-Lamberty B; Frolking S; Wise MA; Janetos AC Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19633-8. PubMed ID: 20921413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]