These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Searchinger T; Heimlich R; Houghton RA; Dong F; Elobeid A; Fabiosa J; Tokgoz S; Hayes D; Yu TH Science; 2008 Feb; 319(5867):1238-40. PubMed ID: 18258860 [TBL] [Abstract][Full Text] [Related]
23. Relevance of emissions timing in biofuel greenhouse gases and climate impacts. Schwietzke S; Griffin WM; Matthews HS Environ Sci Technol; 2011 Oct; 45(19):8197-203. PubMed ID: 21866889 [TBL] [Abstract][Full Text] [Related]
24. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels. Cai H; Wang MQ Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852 [TBL] [Abstract][Full Text] [Related]
25. Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Kim S; Dale BE Bioresour Technol; 2008 Aug; 99(12):5250-60. PubMed ID: 17964144 [TBL] [Abstract][Full Text] [Related]
26. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
27. Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Yang Y; Bae J; Kim J; Suh S Environ Sci Technol; 2012 Apr; 46(7):3671-8. PubMed ID: 22390573 [TBL] [Abstract][Full Text] [Related]
28. Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production. Dunn JB; Mueller S; Wang M; Han J Biotechnol Lett; 2012 Dec; 34(12):2259-63. PubMed ID: 23086569 [TBL] [Abstract][Full Text] [Related]
29. Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. Abraha M; Gelfand I; Hamilton SK; Chen J; Robertson GP Ecol Appl; 2018 Jul; 28(5):1362-1369. PubMed ID: 29856901 [TBL] [Abstract][Full Text] [Related]
30. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Mosier AR; Halvorson AD; Reule CA; Liu XJ J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479 [TBL] [Abstract][Full Text] [Related]
31. Corn-based ethanol production and environmental quality: a case of Iowa and the conservation reserve program. Secchi S; Gassman PW; Williams JR; Babcock BA Environ Manage; 2009 Oct; 44(4):732-44. PubMed ID: 19707705 [TBL] [Abstract][Full Text] [Related]
32. Ethanol production: energy, economic, and environmental losses. Pimentel D; Patzek T; Cecil G Rev Environ Contam Toxicol; 2007; 189():25-41. PubMed ID: 17193735 [TBL] [Abstract][Full Text] [Related]
33. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
34. Land clearing and the biofuel carbon debt. Fargione J; Hill J; Tilman D; Polasky S; Hawthorne P Science; 2008 Feb; 319(5867):1235-8. PubMed ID: 18258862 [TBL] [Abstract][Full Text] [Related]
35. Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services. Potma Gonçalves DR; Carlos de Moraes Sá J; Mishra U; Ferreira Furlan FJ; Ferreira LA; Inagaki TM; Romaniw J; de Oliveira Ferreira A; Briedis C Environ Pollut; 2018 Dec; 243(Pt B):940-952. PubMed ID: 30248602 [TBL] [Abstract][Full Text] [Related]
36. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368 [TBL] [Abstract][Full Text] [Related]
37. Land-use and alternative bioenergy pathways for waste biomass. Campbell JE; Block E Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033 [TBL] [Abstract][Full Text] [Related]
38. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Wu M; Wang M; Liu J; Huo H Biotechnol Prog; 2008; 24(6):1204-14. PubMed ID: 19194933 [TBL] [Abstract][Full Text] [Related]
39. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Kendall A; Chang B; Sharpe B Environ Sci Technol; 2009 Sep; 43(18):7142-7. PubMed ID: 19806755 [TBL] [Abstract][Full Text] [Related]
40. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Jin VL; Schmer MR; Stewart CE; Sindelar AJ; Varvel GE; Wienhold BJ Glob Chang Biol; 2017 Jul; 23(7):2848-2862. PubMed ID: 28135027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]