BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19323205)

  • 1. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.
    Dunn AL; Wofsy SC; v H Bright A
    Ecol Appl; 2009 Mar; 19(2):495-504. PubMed ID: 19323205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.
    Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S
    Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence.
    Bond-Lamberty B; Wang C; Gower ST
    Tree Physiol; 2004 Dec; 24(12):1387-95. PubMed ID: 15465701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.
    Ryan MG
    Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.
    Grant RF
    Tree Physiol; 2004 Jan; 24(1):1-18. PubMed ID: 14652210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.
    Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G
    Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.
    Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S
    SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce.
    Bronson DR; Gower ST
    Tree Physiol; 2010 Apr; 30(4):441-9. PubMed ID: 20144925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term enhanced winter soil frost alters growing season CO
    Zhao J; Peichl M; Nilsson MB
    Glob Chang Biol; 2017 Aug; 23(8):3139-3153. PubMed ID: 28075520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest soil respiration rate and delta13C is regulated by recent above ground weather conditions.
    Ekblad A; Boström B; Holm A; Comstedt D
    Oecologia; 2005 Mar; 143(1):136-42. PubMed ID: 15578226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests.
    Stelling JM; Slesak RA; Windmuller-Campione MA; Grinde A
    J Environ Manage; 2023 Aug; 339():117783. PubMed ID: 37058930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.
    Martz F; Vuosku J; Ovaskainen A; Stark S; Rautio P
    PLoS One; 2016; 11(6):e0156620. PubMed ID: 27254100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An incubation study of temperature sensitivity of greenhouse gas fluxes in three land-cover types near Sydney, Australia.
    Li J; Nie M; Pendall E
    Sci Total Environ; 2019 Oct; 688():324-332. PubMed ID: 31233914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.