BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19323468)

  • 1. Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding.
    Takematsu K; Fukuzawa K; Omagari K; Nakajima S; Nakajima K; Mochizuki Y; Nakano T; Watanabe H; Tanaka S
    J Phys Chem B; 2009 Apr; 113(15):4991-4. PubMed ID: 19323468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations.
    Yoshioka A; Fukuzawa K; Mochizuki Y; Yamashita K; Nakano T; Okiyama Y; Nobusawa E; Nakajima K; Tanaka S
    J Mol Graph Model; 2011 Sep; 30():110-9. PubMed ID: 21798776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study.
    Zhou R; Das P; Royyuru AK
    J Phys Chem B; 2008 Dec; 112(49):15813-20. PubMed ID: 19367871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of binding specificity of influenza viral hemagglutinin to avian and human receptors based on the fragment molecular orbital method.
    Iwata T; Fukuzawa K; Nakajima K; Aida-Hyugaji S; Mochizuki Y; Watanabe H; Tanaka S
    Comput Biol Chem; 2008 Jun; 32(3):198-211. PubMed ID: 18485828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations.
    Sawada T; Fedorov DG; Kitaura K
    J Am Chem Soc; 2010 Dec; 132(47):16862-72. PubMed ID: 21049953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying potential immunodominant positions and predicting antigenic variants of influenza A/H3N2 viruses.
    Lee MS; Chen MC; Liao YC; Hsiung CA
    Vaccine; 2007 Nov; 25(48):8133-9. PubMed ID: 17950961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin.
    Abe Y; Takashita E; Sugawara K; Matsuzaki Y; Muraki Y; Hongo S
    J Virol; 2004 Sep; 78(18):9605-11. PubMed ID: 15331693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of amino acid residues of influenza A virus H3 HA contributing to the recognition of molecular species of sialic acid.
    Takahashi T; Hashimoto A; Maruyama M; Ishida H; Kiso M; Kawaoka Y; Suzuki Y; Suzuki T
    FEBS Lett; 2009 Oct; 583(19):3171-4. PubMed ID: 19720062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic characterisation of H3N2 subtypes of the influenza virus by mass spectrometry.
    Morrissey B; Streamer M; Downard KM
    J Virol Methods; 2007 Nov; 145(2):106-14. PubMed ID: 17588679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monoclonal antibodies differentially affect the interaction between the hemagglutinin of H9 influenza virus escape mutants and sialic receptors.
    Ilyushina N; Rudneva I; Gambaryan A; Bovin N; Kaverin N
    Virology; 2004 Nov; 329(1):33-9. PubMed ID: 15476872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody.
    Ping J; Li C; Deng G; Jiang Y; Tian G; Zhang S; Bu Z; Chen H
    Biochem Biophys Res Commun; 2008 Jun; 371(1):168-71. PubMed ID: 18424263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying discriminative amino acids within the hemagglutinin of human influenza A H5N1 virus using a decision tree.
    Wu LC; Horng JT; Huang HD; Chen WL
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):689-95. PubMed ID: 19000947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
    Das P; Li J; Royyuru AK; Zhou R
    J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99.
    Jin H; Zhou H; Liu H; Chan W; Adhikary L; Mahmood K; Lee MS; Kemble G
    Virology; 2005 May; 336(1):113-9. PubMed ID: 15866076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Peptide mapping of the monoclonal antibodies against the heavy chain hemagglutinin from influenza virus H3N2].
    Mazurkova NA; Isaeva EI; Podcherniaeva RIa
    Mol Gen Mikrobiol Virusol; 2006; (4):19-23. PubMed ID: 17094654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells.
    Su Y; Yang HY; Zhang BJ; Jia HL; Tien P
    Arch Virol; 2008; 153(12):2253-61. PubMed ID: 19020946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of antigen-antibody interactions employing a MALDI mass spectrometry immunoassay.
    Morrissey B; Downard KM
    Anal Chem; 2008 Oct; 80(20):7720-6. PubMed ID: 18816071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiology. Influenza escapes immunity along neutral networks.
    van Nimwegen E
    Science; 2006 Dec; 314(5807):1884-6. PubMed ID: 17185589
    [No Abstract]   [Full Text] [Related]  

  • 19. Immunological study of HA1 domain of hemagglutinin of influenza H5N1 virus.
    Chiu FF; Venkatesan N; Wu CR; Chou AH; Chen HW; Lian SP; Liu SJ; Huang CC; Lian WC; Chong P; Leng CH
    Biochem Biophys Res Commun; 2009 May; 383(1):27-31. PubMed ID: 19324009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans.
    Koelle K; Cobey S; Grenfell B; Pascual M
    Science; 2006 Dec; 314(5807):1898-903. PubMed ID: 17185596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.