These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 19323490)

  • 1. Harnessing labile bonds between nanogel particles to create self-healing materials.
    Kolmakov GV; Matyjaszewski K; Balazs AC
    ACS Nano; 2009 Apr; 3(4):885-92. PubMed ID: 19323490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of parallel reformable bonds in the self-healing of cross-linked nanogel particles.
    Salib IG; Kolmakov GV; Gnegy CN; Matyjaszewski K; Balazs AC
    Langmuir; 2011 Apr; 27(7):3991-4003. PubMed ID: 21348477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the nanoscratching of self-healing materials.
    Duki SF; Kolmakov GV; Yashin VV; Kowalewski T; Matyjaszewski K; Balazs AC
    J Chem Phys; 2011 Feb; 134(8):084901. PubMed ID: 21361553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using mesoscopic models to design strong and tough biomimetic polymer networks.
    Salib IG; Kolmakov GV; Bucior BJ; Peleg O; Kröger M; Savin T; Vogel V; Matyjaszewski K; Balazs AC
    Langmuir; 2011 Nov; 27(22):13796-805. PubMed ID: 21977962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling polymer grafted nanoparticle networks reinforced by high-strength chains.
    Hamer MJ; Iyer BV; Yashin VV; Kowalewski T; Matyjaszewski K; Balazs AC
    Soft Matter; 2014 Mar; 10(9):1374-83. PubMed ID: 24652523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using nanoparticles to create self-healing composites.
    Lee JY; Buxton GA; Balazs AC
    J Chem Phys; 2004 Sep; 121(11):5531-40. PubMed ID: 15352848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing Dynamic Covalent Bonds in Patchy Nanoparticles: Creating Shape-Shifting Building Blocks for Rational and Responsive Self-Assembly.
    Guo R; Liu Z; Xie XM; Yan LT
    J Phys Chem Lett; 2013 Apr; 4(8):1221-6. PubMed ID: 26282133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel.
    Bencherif SA; Washburn NR; Matyjaszewski K
    Biomacromolecules; 2009 Sep; 10(9):2499-507. PubMed ID: 19711888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds.
    Neal JA; Mozhdehi D; Guan Z
    J Am Chem Soc; 2015 Apr; 137(14):4846-50. PubMed ID: 25790015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Torsion for Controllable Reconfiguration of Binary Nanoparticle Networks.
    Zhang T; Mbanga BL; Yashin VV; Balazs AC
    ACS Nano; 2017 Mar; 11(3):3059-3066. PubMed ID: 28245101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple route to interpenetrating network hydrogel with high mechanical strength.
    Tang Q; Sun X; Li Q; Wu J; Lin J
    J Colloid Interface Sci; 2009 Nov; 339(1):45-52. PubMed ID: 19665139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A material with electrically tunable strength and flow stress.
    Jin HJ; Weissmüller J
    Science; 2011 Jun; 332(6034):1179-82. PubMed ID: 21636769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis].
    Yukata K; Takahashi M; Yasui N
    Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing mechanomutable composites: reconfiguring the structure of nanoparticle networks through mechanical deformation.
    Hamer MJ; Iyer BV; Yashin VV; Balazs AC
    Nano Lett; 2014 Aug; 14(8):4745-50. PubMed ID: 25046251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing biomimetic cryptic bonds to form self-reinforcing gels.
    Biswas S; Yashin VV; Balazs AC
    Soft Matter; 2020 Jun; 16(22):5120-5131. PubMed ID: 32373828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic picture of cooperative processes in restructuring gel networks.
    Colombo J; Widmer-Cooper A; Del Gado E
    Phys Rev Lett; 2013 May; 110(19):198301. PubMed ID: 23705744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of monomeric sequence on mechanical properties of P(VP-co-HEMA) hydrogels at low hydration.
    Lee SG; Brunello GF; Jang SS; Lee JH; Bucknall DG
    J Phys Chem B; 2009 May; 113(19):6604-12. PubMed ID: 19358560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of shear and tensile bond strength between dentin and ceramics using dual-polymerizing resin cements.
    Pekkan G; Hekimoglu C
    J Prosthet Dent; 2009 Oct; 102(4):242-52. PubMed ID: 19782827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.