These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19323540)

  • 21. Thermodynamic stability and kinetic foldability of a lattice protein model.
    Li J; Wang J; Zhang J; Wang W
    J Chem Phys; 2004 Apr; 120(13):6274-87. PubMed ID: 15267515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM; Gotoh T; Yamamoto H
    Biotechnol Annu Rev; 2008; 14():109-41. PubMed ID: 18606361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure.
    Bystroff C; Webb-Robertson BJ
    BMC Bioinformatics; 2008 Oct; 9():429. PubMed ID: 18847485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of single-point sequence alterations on the aggregation propensity of a model protein.
    Bratko D; Cellmer T; Prausnitz JM; Blanch HW
    J Am Chem Soc; 2006 Feb; 128(5):1683-91. PubMed ID: 16448142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site interdependence attributed to tertiary structure in amino acid sequence evolution.
    Rodrigue N; Lartillot N; Bryant D; Philippe H
    Gene; 2005 Mar; 347(2):207-17. PubMed ID: 15733531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution and similarity evaluation of protein structures in contact map space.
    Gupta N; Mangal N; Biswas S
    Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of site-directed point mutations in protein misfolding.
    Baruah A; Biswas P
    Phys Chem Chem Phys; 2014 Jul; 16(27):13964-73. PubMed ID: 24898496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model for the nucleation mechanism of protein folding.
    Djikaev YS; Ruckenstein E
    J Phys Chem B; 2007 Feb; 111(4):886-97. PubMed ID: 17249833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design.
    Humphris EL; Kortemme T
    Structure; 2008 Dec; 16(12):1777-88. PubMed ID: 19081054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in computational protein design.
    Park S; Yang X; Saven JG
    Curr Opin Struct Biol; 2004 Aug; 14(4):487-94. PubMed ID: 15313244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein designability analysis in sequence principal component space using 2D lattice model.
    Li ZR; Han X; Liu GR
    Comput Methods Programs Biomed; 2004 Oct; 76(1):21-9. PubMed ID: 15313539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal protein library design using recombination or point mutations based on sequence-based scoring functions.
    Pantazes RJ; Saraf MC; Maranas CD
    Protein Eng Des Sel; 2007 Aug; 20(8):361-73. PubMed ID: 17686879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins.
    Morra G; Colombo G
    Proteins; 2008 Aug; 72(2):660-72. PubMed ID: 18247351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A statistical analysis of random mutagenesis methods used for directed protein evolution.
    Wong TS; Roccatano D; Zacharias M; Schwaneberg U
    J Mol Biol; 2006 Jan; 355(4):858-71. PubMed ID: 16325201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions.
    Frenz CM
    Proteins; 2005 May; 59(2):147-51. PubMed ID: 15723345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inverse protein folding problem: self consistent mean field optimisation of a structure specific mutation matrix.
    Delarue M; Koehl P
    Pac Symp Biocomput; 1997; ():109-21. PubMed ID: 9390284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.