BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1932389)

  • 1. Comparison of short term indirect calorimetry and doubly labeled water method for the assessment of energy expenditure in preterm infants.
    Westerterp KR; Lafeber HN; Sulkers EJ; Sauer PJ
    Biol Neonate; 1991; 60(2):75-82. PubMed ID: 1932389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining energy expenditure in preterm infants: comparison of 2H(2)18O method and indirect calorimetry.
    Jensen CL; Butte NF; Wong WW; Moon JK
    Am J Physiol; 1992 Sep; 263(3 Pt 2):R685-92. PubMed ID: 1415659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the doubly labeled water (2H2(18)O) method with indirect calorimetry and a nutrient-balance study for simultaneous determination of energy expenditure, water intake, and metabolizable energy intake in preterm infants.
    Roberts SB; Coward WA; Schlingenseipen KH; Nohria V; Lucas A
    Am J Clin Nutr; 1986 Sep; 44(3):315-22. PubMed ID: 3092629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of indirect calorimetry in monitoring feeding of low birth-weight preterm infants].
    Krämer T; Böhler T; Janecke AR; Hoffmann GF; Linderkamp O
    Klin Padiatr; 1999; 211(5):389-93. PubMed ID: 10572895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of the doubly labeled water method for estimating CO2 production in mice under different nutritional conditions.
    Guidotti S; Meijer HA; van Dijk G
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(3):E317-24. PubMed ID: 23715730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of doubly labeled water for assessing energy expenditure in infants.
    Jones PJ; Winthrop AL; Schoeller DA; Swyer PR; Smith J; Filler RM; Heim T
    Pediatr Res; 1987 Mar; 21(3):242-6. PubMed ID: 3104873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seven-day validation of doubly labeled water method using indirect room calorimetry.
    Seale JL; Conway JM; Canary JJ
    J Appl Physiol (1985); 1993 Jan; 74(1):402-9. PubMed ID: 8383108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate of carbon dioxide production and energy expenditure in fed and food-deprived adult dogs determined by indirect calorimetry and isotopic methods.
    Pouteau EB; Mariot SM; Martin LJ; Dumon HJ; Mabon FJ; Krempf MA; Robins RJ; Darmaun DH; Naulet NA; Nguyen PG
    Am J Vet Res; 2002 Jan; 63(1):111-8. PubMed ID: 16206791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the doubly labeled water (2H2 18O) method with indirect calorimetry and a nutrient-balance study for simultaneous determination of energy expenditure, water intake, and metabolizable energy intake in preterm infants.
    Wong WW; Butte NF; Garza C; Klein PD
    Am J Clin Nutr; 1987 Jun; 45(6):1543-8. PubMed ID: 3591734
    [No Abstract]   [Full Text] [Related]  

  • 10. Factors affecting the measurement of energy expenditure during energy balance studies in preterm infants.
    Perring J; Henderson M; Cooke RJ
    Pediatr Res; 2000 Oct; 48(4):518-23. PubMed ID: 11004244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.
    Melanson EL; Swibas T; Kohrt WM; Catenacci VA; Creasy SA; Plasqui G; Wouters L; Speakman JR; Berman ESF
    Am J Physiol Endocrinol Metab; 2018 Feb; 314(2):E124-E130. PubMed ID: 28978547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breath water-based doubly labelled water method for the noninvasive determination of CO
    Junghans P; Görs S; Langhammer M; Metges CC
    Isotopes Environ Health Stud; 2018 Dec; 54(6):561-572. PubMed ID: 30318924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Body Position on Energy Expenditure of Preterm Infants as Determined by Simultaneous Direct and Indirect Calorimetry.
    Bell EF; Johnson KJ; Dove EL
    Am J Perinatol; 2017 Apr; 34(5):493-498. PubMed ID: 27716862
    [No Abstract]   [Full Text] [Related]  

  • 14. Maximizing precision and accuracy of the doubly labeled water method via optimal sampling protocol, calculation choices, and incorporation of
    Berman ESF; Swibas T; Kohrt WM; Catenacci VA; Creasy SA; Melanson EL; Speakman JR
    Eur J Clin Nutr; 2020 Mar; 74(3):454-464. PubMed ID: 31427762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure of female adolescents.
    Wong WW
    J Am Coll Nutr; 1994 Aug; 13(4):332-7. PubMed ID: 7963137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical evaluation of the factorial and heart-rate recording methods for the determination of energy expenditure of free-living elderly people.
    Morio B; Ritz P; Verdier E; Montaurier C; Beaufrere B; Vermorel M
    Br J Nutr; 1997 Nov; 78(5):709-22. PubMed ID: 9389895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of total energy expenditure in grossly obese women: comparison of the bicarbonate-urea method with whole-body calorimetry and free-living doubly labelled water.
    Gibney ER; Murgatroyd P; Wright A; Jebb S; Elia M
    Int J Obes Relat Metab Disord; 2003 Jun; 27(6):641-7. PubMed ID: 12833106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using doubly-labeled water measurements of human energy expenditure to estimate inhalation rates.
    Stifelman M
    Sci Total Environ; 2007 Feb; 373(2-3):585-90. PubMed ID: 17234257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of heart rate monitoring combined with indirect calorimetry and the doubly labelled water (2H2(18)O) method for the measurement of energy expenditure in children.
    Emons HJ; Groenenboom DC; Westerterp KR; Saris WH
    Eur J Appl Physiol Occup Physiol; 1992; 65(2):99-103. PubMed ID: 1396646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A standard calculation methodology for human doubly labeled water studies.
    Speakman JR; Yamada Y; Sagayama H; Berman ESF; Ainslie PN; Andersen LF; Anderson LJ; Arab L; Baddou I; Bedu-Addo K; Blaak EE; Blanc S; Bonomi AG; Bouten CVC; Bovet P; Buchowski MS; Butte NF; Camps SGJA; Close GL; Cooper JA; Creasy SA; Das SK; Cooper R; Dugas LR; Ebbeling CB; Ekelund U; Entringer S; Forrester T; Fudge BW; Goris AH; Gurven M; Hambly C; El Hamdouchi A; Hoos MB; Hu S; Joonas N; Joosen AM; Katzmarzyk P; Kempen KP; Kimura M; Kraus WE; Kushner RF; Lambert EV; Leonard WR; Lessan N; Ludwig DS; Martin CK; Medin AC; Meijer EP; Morehen JC; Morton JP; Neuhouser ML; Nicklas TA; Ojiambo RM; Pietiläinen KH; Pitsiladis YP; Plange-Rhule J; Plasqui G; Prentice RL; Rabinovich RA; Racette SB; Raichlen DA; Ravussin E; Reynolds RM; Roberts SB; Schuit AJ; Sjödin AM; Stice E; Urlacher SS; Valenti G; Van Etten LM; Van Mil EA; Wells JCK; Wilson G; Wood BM; Yanovski J; Yoshida T; Zhang X; Murphy-Alford AJ; Loechl CU; Melanson EL; Luke AH; Pontzer H; Rood J; Schoeller DA; Westerterp KR; Wong WW;
    Cell Rep Med; 2021 Feb; 2(2):100203. PubMed ID: 33665639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.