BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19324395)

  • 1. Tree-based modeling of complex interactions of phosphorus loadings and environmental factors.
    Grunwald S; Daroub SH; Lang TA; Diaz OA
    Sci Total Environ; 2009 Jun; 407(12):3772-83. PubMed ID: 19324395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term water quality trends after implementing best management practices in South Florida.
    Daroub SH; Lang TA; Diaz OA; Grunwald S
    J Environ Qual; 2009; 38(4):1683-93. PubMed ID: 19549945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments.
    Shore M; Jordan P; Mellander PE; Kelly-Quinn M; Wall DP; Murphy PN; Melland AR
    Sci Total Environ; 2014 Aug; 490():405-15. PubMed ID: 24863139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus run-off assessment in a watershed.
    Chebud Y; Naja GM; Rivero R
    J Environ Monit; 2011 Jan; 13(1):66-73. PubMed ID: 21069224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus.
    Bishop PL; Hively WD; Stedinger JR; Rafferty MR; Lojpersberger JL; Bloomfield JA
    J Environ Qual; 2005; 34(3):1087-101. PubMed ID: 15888895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of phosphorus loads in sugarcane in a low-relief landscape using ontology-based simulation.
    Kwon HY; Grunwald S; Beck HW; Jung Y; Daroub SH; Lang TA; Morgan KT
    J Environ Qual; 2010; 39(5):1751-61. PubMed ID: 21043280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability.
    Kröger R; Holland MM; Moore MT; Cooper CM
    J Environ Qual; 2008; 37(1):107-13. PubMed ID: 18178883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined monitoring and modeling indicate the most effective agricultural best management practices.
    Easton ZM; Walter MT; Steenhuis TS
    J Environ Qual; 2008; 37(5):1798-809. PubMed ID: 18689741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field loading dynamics of total phosphorus and short-term water quality variations at a rainbow trout cage farm in Lake Huron.
    Reid GK; McMillan I; Moccia RD
    J Environ Monit; 2006 Sep; 8(9):947-54. PubMed ID: 16951755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.
    Vigiak O; Rattray D; McInnes J; Newham LT; Roberts AM
    J Environ Manage; 2012 Nov; 110():215-25. PubMed ID: 22796756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
    He B; Oki K; Wang Y; Oki T
    Water Sci Technol; 2009; 60(8):2009-15. PubMed ID: 19844047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in phosphorus losses from grassland in response to Olsen-P accumulation.
    Watson CJ; Smith RV; Matthews DI
    J Environ Qual; 2007; 36(5):1452-60. PubMed ID: 17766824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading.
    Rao NS; Easton ZM; Schneiderman EM; Zion MS; Lee DR; Steenhuis TS
    J Environ Manage; 2009 Mar; 90(3):1385-95. PubMed ID: 19008034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the difference of eight model applications to assess diffuse annual nutrient losses from agricultural land.
    Schoumans OF; Silgram M; Walvoort DJ; Groenendijk P; Bouraoui F; Andersen HE; Lo Porto A; Reisser H; Le Gall G; Anthony S; Arheimer B; Johnsson H; Panagopoulos Y; Mimikou M; Zweynert U; Behrendt H; Barr A
    J Environ Monit; 2009 Mar; 11(3):540-53. PubMed ID: 19280033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific conductance and ionic characteristics of farm canals in the everglades agricultural area.
    Chen M; Daroub SH; Lang TA; Diaz OA
    J Environ Qual; 2006; 35(1):141-50. PubMed ID: 16391285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests.
    Rothwell JJ; Futter MN; Dise NB
    Environ Pollut; 2008 Nov; 156(2):544-52. PubMed ID: 18291565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus and water budgets in an agricultural basin.
    Faridmarandi S; Naja GM
    Environ Sci Technol; 2014; 48(15):8481-90. PubMed ID: 24955757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low cost method to estimate dissolved reactive phosphorus loads of rivers and streams.
    Müller B; Stöckli A; Stierli R; Butscher E; Gächter R
    J Environ Monit; 2007 Jan; 9(1):82-6. PubMed ID: 17213946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.