These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 19324399)

  • 1. Mitochondria-rich cells in amphibian skin epithelium: Relationship of immuno- and peanut lectin labeling pattern and transport functions.
    Katz U; Gabbay S
    Acta Histochem; 2010 Jul; 112(4):345-54. PubMed ID: 19324399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lectin binding patterns in amphibian skin epithelium.
    Zaccone G; Fasulo S; Gabbay S; Mauceri A; Katz U
    Acta Histochem; 1999 Jul; 101(3):317-26. PubMed ID: 10443294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lectin binding pattern and band 3 localization in toad skin epithelium and the effect of salt acclimation.
    Katz U; Zaccone G; Fasulo S; Mauceri A; Gabbay S
    Biol Cell; 1997 May; 89(2):141-52. PubMed ID: 9351193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin epithelial transport and structural relationships in naturally metamorphosing Pelobates syriacus.
    Katz U; Rozman A; Gabbay S
    J Exp Zool A Comp Exp Biol; 2003 Jul; 298(1):1-9. PubMed ID: 12840833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of epithelial electrolyte transport by marker ions.
    Dörge A; Rick R
    Scanning Microsc; 1990 Jun; 4(2):449-53; discussion 453-5. PubMed ID: 2402613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish.
    Jonz MG; Nurse CA
    J Comp Neurol; 2006 Aug; 497(5):817-32. PubMed ID: 16786554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of mitochondria-rich cells for passive chloride transport, with a discussion of Ussing's contribution to our understanding of shunt pathways in epithelia.
    Larsen EH; Kristensen P; Nedergaard S; Willumsen NJ
    J Membr Biol; 2001 Dec; 184(3):247-54. PubMed ID: 11891549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss).
    Ivanis G; Esbaugh AJ; Perry SF
    J Exp Biol; 2008 Aug; 211(Pt 15):2467-77. PubMed ID: 18626081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lectin UEA-I-binding proteins are specifically increased in the squamous epithelium of patients with Barrett's esophagus.
    Neumann H; Wex T; Mönkemüller K; Vieth M; Fry LC; Malfertheiner P
    Digestion; 2008; 78(4):201-7. PubMed ID: 19129702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in the heterocellular epidermis of Pelobates syriacus integument.
    Gabbay S; Rosenberg M; Warburg MR; Rott R; Katz U
    Biol Cell; 1992; 76(2):185-91. PubMed ID: 1300199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost.
    Marshall WS; Nishioka RS
    J Exp Zool; 1980 Nov; 214(2):147-56. PubMed ID: 7462981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of epithelial ion transport by X-ray microanalysis.
    Rick R; Dörge A; Beck FX; Thurau K
    Scan Electron Microsc; 1983; (Pt 2):801-8. PubMed ID: 6605576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride transport in amphibian skin: a review.
    Lacaz-Vieira F; Procopio J
    Braz J Med Biol Res; 1988; 21(6):1119-28. PubMed ID: 3074837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Model studies on sodium and water transport in isolated amphibian epithelia].
    Tyrakowski T; Knapowski J
    Postepy Hig Med Dosw; 1976; 30(3):347-71. PubMed ID: 959068
    [No Abstract]   [Full Text] [Related]  

  • 15. [Mechanism of action of aldosterone as a regulatory factor of the extracellular volume].
    Crabbe K
    Bull Mem Acad R Med Belg; 1989; 144(1-2):176-86; discussion 186-7. PubMed ID: 2804478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: evidence for Na+/H+ activity.
    Parks SK; Tresguerres M; Galvez F; Goss GG
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):139-45. PubMed ID: 19857597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The amphibian octavo-lateralis system and its regressive and progressive evolution.
    Fritzsch B
    Acta Biol Hung; 1988; 39(2-3):305-22. PubMed ID: 3077009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between mouse lymphocyte receptors for peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA).
    De Petris S; Takacs B
    Eur J Immunol; 1983 Oct; 13(10):831-40. PubMed ID: 6357809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravitreal injection of fluorochrome-conjugated peanut agglutinin results in specific and reversible labeling of mammalian cones in vivo.
    Krishnamoorthy V; Jain V; Cherukuri P; Baloni S; Dhingra NK
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2643-50. PubMed ID: 18281609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.