BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19324580)

  • 1. Computational screening and design of S100B ligand to block S100B-p53 interaction.
    Whitlow JL; Varughese JF; Zhou Z; Bartolotti LJ; Li Y
    J Mol Graph Model; 2009; 27(8):969-77. PubMed ID: 19324580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands.
    Agamennone M; Cesari L; Lalli D; Turlizzi E; Del Conte R; Turano P; Mangani S; Padova A
    ChemMedChem; 2010 Mar; 5(3):428-35. PubMed ID: 20077460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein.
    Zhou Z; Li Y
    J Comput Aided Mol Des; 2009 Oct; 23(10):705-14. PubMed ID: 19597941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential conformational heterogeneity of p53 bound to S100B(ββ).
    McDowell C; Chen J; Chen J
    J Mol Biol; 2013 Mar; 425(6):999-1010. PubMed ID: 23313430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of small molecule inhibitors of the calcium-dependent S100B-p53 tumor suppressor interaction.
    Markowitz J; Chen I; Gitti R; Baldisseri DM; Pan Y; Udan R; Carrier F; MacKerell AD; Weber DJ
    J Med Chem; 2004 Oct; 47(21):5085-93. PubMed ID: 15456252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes in the C-terminus of Ca2+-bound rat S100B (beta beta) upon binding to a peptide derived from the C-terminal regulatory domain of p53.
    Rustandi RR; Baldisseri DM; Drohat AC; Weber DJ
    Protein Sci; 1999 Sep; 8(9):1743-51. PubMed ID: 10493575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53.
    van Dieck J; Teufel DP; Jaulent AM; Fernandez-Fernandez MR; Rutherford TJ; Wyslouch-Cieszynska A; Fersht AR
    J Mol Biol; 2009 Dec; 394(5):922-30. PubMed ID: 19819244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-binding properties of wild-type and EF-hand mutants of S100B in the presence and absence of a peptide derived from the C-terminal negative regulatory domain of p53.
    Markowitz J; Rustandi RR; Varney KM; Wilder PT; Udan R; Wu SL; Horrocks WD; Weber DJ
    Biochemistry; 2005 May; 44(19):7305-14. PubMed ID: 15882069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the negative regulatory domain of p53 bound to S100B(betabeta).
    Rustandi RR; Baldisseri DM; Weber DJ
    Nat Struct Biol; 2000 Jul; 7(7):570-4. PubMed ID: 10876243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12.
    Inman KG; Yang R; Rustandi RR; Miller KE; Baldisseri DM; Weber DJ
    J Mol Biol; 2002 Dec; 324(5):1003-14. PubMed ID: 12470955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of small-molecule inhibitors of the human S100B-p53 interaction and evaluation of their activity in human melanoma cells.
    Yoshimura C; Miyafusa T; Tsumoto K
    Bioorg Med Chem; 2013 Mar; 21(5):1109-15. PubMed ID: 23375094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment docking to S100 proteins reveals a wide diversity of weak interaction sites.
    Arendt Y; Bhaumik A; Del Conte R; Luchinat C; Mori M; Porcu M
    ChemMedChem; 2007 Nov; 2(11):1648-54. PubMed ID: 17705319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin.
    Mäler L; Sastry M; Chazin WJ
    J Mol Biol; 2002 Mar; 317(2):279-90. PubMed ID: 11902843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin.
    De Grandis V; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2007; 20(4):215-26. PubMed ID: 17703463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography.
    Charpentier TH; Wilder PT; Liriano MA; Varney KM; Zhong S; Coop A; Pozharski E; MacKerell AD; Toth EA; Weber DJ
    Biochemistry; 2009 Jul; 48(26):6202-12. PubMed ID: 19469484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis.
    Wilder PT; Baldisseri DM; Udan R; Vallely KM; Weber DJ
    Biochemistry; 2003 Nov; 42(46):13410-21. PubMed ID: 14621986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where cancer meets calcium--p53 crosstalk with EF-hands.
    Ikura M; Yap KL
    Nat Struct Biol; 2000 Jul; 7(7):525-7. PubMed ID: 10876230
    [No Abstract]   [Full Text] [Related]  

  • 19. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B.
    Wilder PT; Lin J; Bair CL; Charpentier TH; Yang D; Liriano M; Varney KM; Lee A; Oppenheim AB; Adhya S; Carrier F; Weber DJ
    Biochim Biophys Acta; 2006 Nov; 1763(11):1284-97. PubMed ID: 17010455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study on binding of S100B protein.
    Gieldon A; Mori M; Del Conte R
    J Mol Model; 2007 Nov; 13(11):1123-31. PubMed ID: 17713798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.