These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19324674)

  • 1. Response of cricket and spider motion-sensing hairs to airflow pulsations.
    Kant R; Humphrey JA
    J R Soc Interface; 2009 Nov; 6(40):1047-64. PubMed ID: 19324674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei).
    McConney ME; Schaber CF; Julian MD; Eberhardt WC; Humphrey JA; Barth FG; Tsukruk VV
    J R Soc Interface; 2009 Aug; 6(37):681-94. PubMed ID: 19091682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei.
    Bathellier B; Barth FG; Albert JT; Humphrey JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):733-46. PubMed ID: 16041533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.
    Joshi K; Mian A; Miller J
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hair canopy of cricket sensory system tuned to predator signals.
    Magal C; Dangles O; Caparroy P; Casas J
    J Theor Biol; 2006 Aug; 241(3):459-66. PubMed ID: 16427653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of air-motion sensing in cricket.
    Dangles O; Pierre D; Magal C; Vannier F; Casas J
    J Exp Biol; 2006 Nov; 209(Pt 21):4363-70. PubMed ID: 17050851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency.
    Bathellier B; Steinmann T; Barth FG; Casas J
    J R Soc Interface; 2012 Jun; 9(71):1131-43. PubMed ID: 22171067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks.
    Steinmann T; Casas J
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arthropod touch reception: spider hair sensilla as rapid touch detectors.
    Albert JT; Friedrich OC; Dechant HE; Barth FG
    J Comp Physiol A; 2001 May; 187(4):303-12. PubMed ID: 11467503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages.
    Steinmann T; Casas J; Krijnen G; Dangles O
    J Exp Biol; 2006 Nov; 209(Pt 21):4398-408. PubMed ID: 17050855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to catch the wind: spider hairs specialized for sensing the movement of air.
    Barth FG
    Naturwissenschaften; 2000 Feb; 87(2):51-8. PubMed ID: 10663135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication.
    Santer RD; Hebets EA
    Proc Biol Sci; 2008 Feb; 275(1633):363-8. PubMed ID: 18055386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral analyses of wind-evoked escape of the cricket, Gryllodes sigillatus.
    Kanou M; Konishi A; Suenaga R
    Zoolog Sci; 2006 Apr; 23(4):359-64. PubMed ID: 16702769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus.
    Okada J; Akamine S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):557-65. PubMed ID: 22534774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.
    Klopsch C; Kuhlmann HC; Barth FG
    J R Soc Interface; 2012 Oct; 9(75):2591-602. PubMed ID: 22572032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.
    Schöneich S; Hedwig B
    J Neurophysiol; 2015 Jan; 113(1):390-9. PubMed ID: 25318763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling arthropod filiform hair motion using the penalty immersed boundary method.
    Heys JJ; Gedeon T; Knott BC; Kim Y
    J Biomech; 2008; 41(5):977-84. PubMed ID: 18255073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spider joint hair sensilla: adaptation to proprioreceptive stimulation.
    Schaber CF; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Feb; 201(2):235-48. PubMed ID: 25398577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predator-induced flow disturbances alert prey, from the onset of an attack.
    Casas J; Steinmann T
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25030986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.