These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19324680)

  • 41. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational protein design-the next generation tool to expand synthetic biology applications.
    Gainza-Cirauqui P; Correia BE
    Curr Opin Biotechnol; 2018 Aug; 52():145-152. PubMed ID: 29729544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Achievements and Challenges in Computational Protein Design.
    Samish I
    Methods Mol Biol; 2017; 1529():21-94. PubMed ID: 27914045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer-based redesign of a beta sandwich protein suggests that extensive negative design is not required for de novo beta sheet design.
    Hu X; Wang H; Ke H; Kuhlman B
    Structure; 2008 Dec; 16(12):1799-805. PubMed ID: 19081056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency.
    Hallen MA; Jou JD; Donald BR
    J Comput Biol; 2017 Jun; 24(6):536-546. PubMed ID: 27681371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.
    Stroganov OV; Novikov FN; Zeifman AA; Stroylov VS; Chilov GG
    Proteins; 2011 Sep; 79(9):2693-710. PubMed ID: 21769942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolutionary protein stabilization in comparison with computational design.
    Wunderlich M; Martin A; Staab CA; Schmid FX
    J Mol Biol; 2005 Sep; 351(5):1160-8. PubMed ID: 16051264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design.
    Brisendine JM; Koder RL
    Biochim Biophys Acta; 2016 May; 1857(5):485-492. PubMed ID: 26498191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A gradient-directed Monte Carlo approach for protein design.
    Hu X; Hu H; Beratan DN; Yang W
    J Comput Chem; 2010 Aug; 31(11):2164-8. PubMed ID: 20186860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transferable coarse-grained potential for de novo protein folding and design.
    Coluzza I
    PLoS One; 2014; 9(12):e112852. PubMed ID: 25436908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of factors that induce cysteine bonding state.
    Karami Z; Abdolmaleki P; Rezaei MA; Jahandideh S; Asadabadi EB
    Comput Biol Med; 2009 Apr; 39(4):332-9. PubMed ID: 19246035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Entropy capacity determines protein folding.
    Galzitskaya OV; Garbuzynskiy SO
    Proteins; 2006 Apr; 63(1):144-54. PubMed ID: 16400647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Miniprotein Design: Past, Present, and Prospects.
    Baker EG; Bartlett GJ; Porter Goff KL; Woolfson DN
    Acc Chem Res; 2017 Sep; 50(9):2085-2092. PubMed ID: 28832117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A fast method for predicting amino acid mutations that lead to unfolding.
    Wright JD; Lim C
    Protein Eng; 2001 Jul; 14(7):479-86. PubMed ID: 11522921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RosettaSurf-A surface-centric computational design approach.
    Scheck A; Rosset S; Defferrard M; Loukas A; Bonet J; Vandergheynst P; Correia BE
    PLoS Comput Biol; 2022 Mar; 18(3):e1009178. PubMed ID: 35294435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.