BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 19324701)

  • 1. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development.
    Drake PL; Mendham DS; White DA; Ogden GN
    Tree Physiol; 2009 May; 29(5):663-74. PubMed ID: 19324701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of corticular photosynthesis following defoliation in Eucalyptus globulus.
    Eyles A; Pinkard EA; O'Grady AP; Worledge D; Warren CR
    Plant Cell Environ; 2009 Aug; 32(8):1004-14. PubMed ID: 19344333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.
    Eyles A; Worledge D; Sands P; Ottenschlaeger ML; Paterson SC; Mendham D; O'Grady AP
    Tree Physiol; 2012 Aug; 32(8):1008-20. PubMed ID: 22826381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.
    Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS
    Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids.
    Velikova V; Loreto F; Brilli F; Stefanov D; Yordanov I
    Plant Biol (Stuttg); 2008 Jan; 10(1):55-64. PubMed ID: 18211547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings.
    Roden JS; Farquhar GD
    Tree Physiol; 2012 Apr; 32(4):490-503. PubMed ID: 22440882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature.
    Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT
    Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply.
    Warren CR
    J Exp Bot; 2004 Oct; 55(406):2313-21. PubMed ID: 15310814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats.
    Zhang Z; Jiang C; Zhang J; Zhang H; Shi L
    Tree Physiol; 2009 Nov; 29(11):1307-16. PubMed ID: 19734548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.
    Goodger JQ; Woodrow IE
    Tree Physiol; 2010 Feb; 30(2):285-96. PubMed ID: 20022865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.
    Diaz-Espejo A; Nicolás E; Fernández JE
    Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.
    Zeppel MJ; Lewis JD; Medlyn B; Barton CV; Duursma RA; Eamus D; Adams MA; Phillips N; Ellsworth DS; Forster MA; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):932-44. PubMed ID: 21616926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral toxicity and physiological functions in tree seedlings irrigated with effluents of varying chemistry in sandy soil of dry region.
    Singh G; Bhati M
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2003 May; 21(1):45-63. PubMed ID: 12826032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.
    Franks PJ; Drake PL; Beerling DJ
    Plant Cell Environ; 2009 Dec; 32(12):1737-1748. PubMed ID: 19682293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus?
    Warren CR
    Tree Physiol; 2011 Jul; 31(7):727-39. PubMed ID: 21849592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?
    Pinkard EA; Eyles A; O'Grady AP
    Plant Cell Environ; 2011 Oct; 34(10):1652-65. PubMed ID: 21707651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban environment of New York City promotes growth in northern red oak seedlings.
    Searle SY; Turnbull MH; Boelman NT; Schuster WS; Yakir D; Griffin KL
    Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.