These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19324896)
1. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Du YM; Tian J; Liao H; Bai CJ; Yan XL; Liu GD Ann Bot; 2009 Jun; 103(8):1239-47. PubMed ID: 19324896 [TBL] [Abstract][Full Text] [Related]
2. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Liao H; Wan H; Shaff J; Wang X; Yan X; Kochian LV Plant Physiol; 2006 Jun; 141(2):674-84. PubMed ID: 16648222 [TBL] [Abstract][Full Text] [Related]
4. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
5. Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1. Sun L; Liang C; Chen Z; Liu P; Tian J; Liu G; Liao H New Phytol; 2014 Apr; 202(1):209-219. PubMed ID: 24325195 [TBL] [Abstract][Full Text] [Related]
6. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis. Liu P; Cai Z; Chen Z; Mo X; Ding X; Liang C; Liu G; Tian J Plant Cell Environ; 2018 Dec; 41(12):2821-2834. PubMed ID: 30066375 [TBL] [Abstract][Full Text] [Related]
7. Multi-omics analysis reveals the roles of purple acid phosphatases in organic phosphorus utilization by the tropical legume Stylosanthes guianensis. Luo J; Chen Z; Huang R; Wu Y; Liu C; Cai Z; Dong R; Arango J; Rao IM; Schultze-Kraft R; Liu G; Liu P Plant J; 2024 Feb; 117(3):729-746. PubMed ID: 37932930 [TBL] [Abstract][Full Text] [Related]
8. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Miao Y; Hu X; Wang L; Schultze-Kraft R; Wang W; Chen Z Plant Physiol Biochem; 2024 Mar; 208():108535. PubMed ID: 38503187 [TBL] [Abstract][Full Text] [Related]
9. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. Luo J; Liu Y; Zhang H; Wang J; Chen Z; Luo L; Liu G; Liu P BMC Plant Biol; 2020 Feb; 20(1):85. PubMed ID: 32087672 [TBL] [Abstract][Full Text] [Related]
10. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. Wang L; Wang W; Miao Y; Peters M; Schultze-Kraft R; Liu G; Chen Z Plant Cell Rep; 2023 Mar; 42(3):575-585. PubMed ID: 36624204 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. Liu P; Huang R; Hu X; Jia Y; Li J; Luo J; Liu Q; Luo L; Liu G; Chen Z BMC Plant Biol; 2019 May; 19(1):212. PubMed ID: 31113380 [TBL] [Abstract][Full Text] [Related]
13. Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. Jemo M; Abaidoo RC; Nolte C; Horst WJ J Plant Physiol; 2007 Apr; 164(4):442-51. PubMed ID: 16569463 [TBL] [Abstract][Full Text] [Related]
15. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. Chen ZC; Liao H J Genet Genomics; 2016 Nov; 43(11):631-638. PubMed ID: 27890545 [TBL] [Abstract][Full Text] [Related]
16. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Kochian LV; Hoekenga OA; Pineros MA Annu Rev Plant Biol; 2004; 55():459-93. PubMed ID: 15377228 [TBL] [Abstract][Full Text] [Related]
17. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L. Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763 [TBL] [Abstract][Full Text] [Related]
18. Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Pang J; Yang J; Lambers H; Tibbett M; Siddique KH; Ryan MH Physiol Plant; 2015 Aug; 154(4):511-25. PubMed ID: 25291346 [TBL] [Abstract][Full Text] [Related]
19. [Screening of wild barley genotypes with high phosphorus use efficiency and their rhizosphere soil inorganic phosphorus fractions]. Xu J; Zhang XZ; Li TX; Yu HY; Ji L Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2821-30. PubMed ID: 24483076 [TBL] [Abstract][Full Text] [Related]
20. Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis. An N; Huang J; Xue Y; Liu P; Liu G; Zhu S; Chen Z Plant Physiol Biochem; 2023 Jan; 194():731-741. PubMed ID: 36577197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]