BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19324900)

  • 61. Characterization and functional annotation of nested transposable elements in eukaryotic genomes.
    Gao C; Xiao M; Ren X; Hayward A; Yin J; Wu L; Fu D; Li J
    Genomics; 2012 Oct; 100(4):222-30. PubMed ID: 22800764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of transposable elements fused in the exonic region of the olive flounder genome.
    Nam GH; Gim JA; Mishra A; Ahn K; Kim S; Kim DH; Cha HJ; Choi YH; Park CI; Kim HS
    Genes Genomics; 2018 Jul; 40(7):707-713. PubMed ID: 29934806
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression.
    Jjingo D; Conley AB; Wang J; Mariño-Ramírez L; Lunyak VV; Jordan IK
    Mob DNA; 2014; 5():14. PubMed ID: 25018785
    [TBL] [Abstract][Full Text] [Related]  

  • 64. ANRIL/CDKN2B-AS shows two-stage clade-specific evolution and becomes conserved after transposon insertions in simians.
    He S; Gu W; Li Y; Zhu H
    BMC Evol Biol; 2013 Nov; 13():247. PubMed ID: 24225082
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Distribution patterns and impact of transposable elements in genes of green algae.
    Philippsen GS; Avaca-Crusca JS; Araujo APU; DeMarco R
    Gene; 2016 Dec; 594(1):151-159. PubMed ID: 27614292
    [TBL] [Abstract][Full Text] [Related]  

  • 66. TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates.
    Levy A; Sela N; Ast G
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D47-52. PubMed ID: 17986453
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of transposable elements on the evolution of mammalian gene regulation.
    Medstrand P; van de Lagemaat LN; Dunn CA; Landry JR; Svenback D; Mager DL
    Cytogenet Genome Res; 2005; 110(1-4):342-52. PubMed ID: 16093686
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Origin of primate orphan genes: a comparative genomics approach.
    Toll-Riera M; Bosch N; Bellora N; Castelo R; Armengol L; Estivill X; Albà MM
    Mol Biol Evol; 2009 Mar; 26(3):603-12. PubMed ID: 19064677
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interspersed repeats are found predominantly in the "old" alpha satellite families.
    Kazakov AE; Shepelev VA; Tumeneva IG; Alexandrov AA; Yurov YB; Alexandrov IA
    Genomics; 2003 Dec; 82(6):619-27. PubMed ID: 14611803
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat.
    Charles M; Belcram H; Just J; Huneau C; Viollet A; Couloux A; Segurens B; Carter M; Huteau V; Coriton O; Appels R; Samain S; Chalhoub B
    Genetics; 2008 Oct; 180(2):1071-86. PubMed ID: 18780739
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation of LINE-1 in mammals.
    Bodak M; Yu J; Ciaudo C
    Biomol Concepts; 2014 Oct; 5(5):409-28. PubMed ID: 25367621
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genome-Wide Analysis of the Association of Transposable Elements with Gene Regulation Suggests that Alu Elements Have the Largest Overall Regulatory Impact.
    Zeng L; Pederson SM; Cao D; Qu Z; Hu Z; Adelson DL; Wei C
    J Comput Biol; 2018 Jun; 25(6):551-562. PubMed ID: 29708779
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Non-traditional Alu evolution and primate genomic diversity.
    Roy-Engel AM; Carroll ML; El-Sawy M; Salem AH; Garber RK; Nguyen SV; Deininger PL; Batzer MA
    J Mol Biol; 2002 Mar; 316(5):1033-40. PubMed ID: 11884141
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ancient traces of tailless retropseudogenes in therian genomes.
    Noll A; Raabe CA; Churakov G; Brosius J; Schmitz J
    Genome Biol Evol; 2015 Feb; 7(3):889-900. PubMed ID: 25724209
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Use of a mammalian interspersed repetitive (MIR) element in the coding and processing sequences of mammalian genes.
    Murnane JP; Morales JF
    Nucleic Acids Res; 1995 Aug; 23(15):2837-9. PubMed ID: 7659505
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era.
    Jurka J; Zietkiewicz E; Labuda D
    Nucleic Acids Res; 1995 Jan; 23(1):170-5. PubMed ID: 7870583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ALU-ring elements in the primate genomes.
    Grover D; Kannan K; Brahmachari SK; Mukerji M
    Genetica; 2005 Jul; 124(2-3):273-89. PubMed ID: 16134339
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcriptional activity of transposable elements in coelacanth.
    Forconi M; Chalopin D; Barucca M; Biscotti MA; De Moro G; Galiana D; Gerdol M; Pallavicini A; Canapa A; Olmo E; Volff JN
    J Exp Zool B Mol Dev Evol; 2014 Sep; 322(6):379-89. PubMed ID: 24038780
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago.
    Britten RJ
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6148-50. PubMed ID: 8016128
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mammalian genome evolution as a result of epigenetic regulation of transposable elements.
    Buckley RM; Adelson DL
    Biomol Concepts; 2014 Jun; 5(3):183-94. PubMed ID: 25372752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.