BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1932545)

  • 1. Ion gradient-induced membrane translocation of model peptides.
    de Kroon AI; Vogt B; van't Hof R; de Kruijff B; de Gier J
    Biophys J; 1991 Sep; 60(3):525-37. PubMed ID: 1932545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles.
    de Kroon AI; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1991 Sep; 1068(2):111-24. PubMed ID: 1680397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of basic amino acids and peptides into liposomes in response to transmembrane pH gradients.
    Chakrabarti AC; Clark-Lewis I; Harrigan PR; Cullis PR
    Biophys J; 1992 Jan; 61(1):228-34. PubMed ID: 1540691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles.
    Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J
    Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide.
    Nicol F; Nir S; Szoka FC
    Biophys J; 1996 Dec; 71(6):3288-301. PubMed ID: 8968598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient.
    Mayer LD; Bally MB; Cullis PR
    Biochim Biophys Acta; 1986 May; 857(1):123-6. PubMed ID: 3964703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine accumulation in large unilamellar vesicle systems induced by transmembrane ion gradients.
    Bally MB; Mayer LD; Loughrey H; Redelmeier T; Madden TD; Wong K; Harrigan PR; Hope MJ; Cullis PR
    Chem Phys Lipids; 1988 Jun; 47(2):97-107. PubMed ID: 2457454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of charge, charge distribution, and hydrophobicity on the transport of short model peptides into liposomes in response to transmembrane pH gradients.
    Chakrabarti AC; Clark-Lewis I; Cullis PR
    Biochemistry; 1994 Jul; 33(28):8479-85. PubMed ID: 8031781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide.
    Parente RA; Nir S; Szoka FC
    J Biol Chem; 1988 Apr; 263(10):4724-30. PubMed ID: 2450874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles.
    Mayer LD; Wong KF; Menon K; Chong C; Harrigan PR; Cullis PR
    Biochemistry; 1988 Mar; 27(6):2053-60. PubMed ID: 3378044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles.
    Murata M; Takahashi S; Shirai Y; Kagiwada S; Hishida R; Ohnishi S
    Biophys J; 1993 Mar; 64(3):724-34. PubMed ID: 8471724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of synthetic model peptides with phospholipid vesicles induced by a membrane potential.
    de Kroon AI; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1989 Jun; 981(2):371-3. PubMed ID: 2730915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential.
    Henriques ST; Costa J; Castanho MA
    Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.
    Parente RA; Nadasdi L; Subbarao NK; Szoka FC
    Biochemistry; 1990 Sep; 29(37):8713-9. PubMed ID: 2271551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane fusion induced by 11-mer anionic and cationic peptides: a structure-function study.
    Pecheur EI; Martin I; Ruysschaert JM; Bienvenue A; Hoekstra D
    Biochemistry; 1998 Feb; 37(8):2361-71. PubMed ID: 9485383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles.
    Wu H; Zheng L; Lentz BR
    Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.