BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 1932548)

  • 1. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water.
    Wiener MC; King GI; White SH
    Biophys J; 1991 Sep; 60(3):568-76. PubMed ID: 1932548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analogue of dioleoylphosphatidylcholine.
    Wiener MC; White SH
    Biochemistry; 1991 Jul; 30(28):6997-7008. PubMed ID: 2069956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.
    Hristova K; White SH
    Biophys J; 1998 May; 74(5):2419-33. PubMed ID: 9591668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure.
    Wiener MC; White SH
    Biophys J; 1992 Feb; 61(2):434-47. PubMed ID: 1547331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups.
    Wiener MC; White SH
    Biophys J; 1992 Feb; 61(2):428-33. PubMed ID: 1547330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. II. "Composition-space" refinement method.
    Wiener MC; White SH
    Biophys J; 1991 Jan; 59(1):174-85. PubMed ID: 2015382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution.
    Wiener MC; White SH
    Biophys J; 1991 Jan; 59(1):162-73. PubMed ID: 2015381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid component volumes: determination and application to bilayer structure calculations.
    Armen RS; Uitto OD; Feller SE
    Biophys J; 1998 Aug; 75(2):734-44. PubMed ID: 9675175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of substance P with phospholipid bilayers: A neutron diffraction study.
    Bradshaw JP; Davies SM; Hauss T
    Biophys J; 1998 Aug; 75(2):889-95. PubMed ID: 9675189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined X-ray and neutron diffraction study of selectively deuterated melittin in phospholipid bilayers: effect of pH.
    Bradshaw JP; Dempsey CE; Watts A
    Mol Membr Biol; 1994; 11(2):79-86. PubMed ID: 7920866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models.
    King GI; White SH
    Biophys J; 1986 May; 49(5):1047-54. PubMed ID: 3708089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase equilibria and formation of vesicles of dioleoylphosphatidylcholine in glycerol/water mixtures.
    Johansson LB; Kalman B; Wikander G; Fransson A; Fontell K; Bergenståhl B; Lindblom G
    Biochim Biophys Acta; 1993 Jul; 1149(2):285-91. PubMed ID: 8391842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices.
    Jacobs RE; White SH
    Biochemistry; 1989 Apr; 28(8):3421-37. PubMed ID: 2742845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes.
    McIntosh TJ; Holloway PW
    Biochemistry; 1987 Mar; 26(6):1783-8. PubMed ID: 3593689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The location of amantadine hydrochloride and free base within phospholipid multilayers: a neutron and X-ray diffraction study.
    Duff KC; Cudmore AJ; Bradshaw JP
    Biochim Biophys Acta; 1993 Jan; 1145(1):149-56. PubMed ID: 8422405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barotropic phase transitions of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes.
    Kaneshina S; Ichimori H; Hata T; Matsuki H
    Biochim Biophys Acta; 1998 Sep; 1374(1-2):1-8. PubMed ID: 9814847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: effects of two cis-unsaturated double bonds.
    Baenziger JE; Jarrell HC; Hill RJ; Smith IC
    Biochemistry; 1991 Jan; 30(4):894-903. PubMed ID: 1989684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of phosphatidylethanolamine in the gel phase as seen by neutron diffraction.
    Büldt G; Seelig J
    Biochemistry; 1980 Dec; 19(26):6170-5. PubMed ID: 7470455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chain-linkage on the structure of phosphatidyl choline bilayers. Hydration studies of 1-hexadecyl 2-palmitoyl-sn-glycero-3-phosphocholine.
    Haas NS; Sripada PK; Shipley GG
    Biophys J; 1990 Jan; 57(1):117-24. PubMed ID: 2297558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation.
    Koenig BW; Strey HH; Gawrisch K
    Biophys J; 1997 Oct; 73(4):1954-66. PubMed ID: 9336191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.