These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1932555)

  • 1. Reversible deformation-dependent erythrocyte cation leak. Extreme sensitivity conferred by minimal peroxidation.
    Hebbel RP; Mohandas N
    Biophys J; 1991 Sep; 60(3):712-5. PubMed ID: 1932555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak.
    Ney PA; Christopher MM; Hebbel RP
    Blood; 1990 Mar; 75(5):1192-8. PubMed ID: 2106354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exaggerated cation leak from oxygenated sickle red blood cells during deformation: evidence for a unique leak pathway.
    Sugihara T; Hebbel RP
    Blood; 1992 Nov; 80(9):2374-8. PubMed ID: 1421408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid hydroperoxides permit deformation-dependent leak of monovalent cation from erythrocytes.
    Sugihara T; Rawicz W; Evans EA; Hebbel RP
    Blood; 1991 Jun; 77(12):2757-63. PubMed ID: 2043771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation of swollen erythrocytes provides a model of sickling-induced leak pathways, including a novel bromide-sensitive component.
    Sugihara T; Yawata Y; Hebbel RP
    Blood; 1994 May; 83(9):2684-91. PubMed ID: 7513211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prehemolytic effects of hydrogen peroxide and t-butylhydroperoxide on selected red cell properties.
    Chen MJ; Sorette MP; Chiu DT; Clark MR
    Biochim Biophys Acta; 1991 Jul; 1066(2):193-200. PubMed ID: 1906750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss.
    Johnson RM; Gannon SA
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C746-51. PubMed ID: 2240192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lanthanides on red blood cell deformability and response to mechanical stress: role of lanthanide ionic radius.
    Alexy T; Baskurt OK; Nemeth N; Uyuklu M; Wenby RB; Meiselman HJ
    Biorheology; 2011; 48(3-4):173-83. PubMed ID: 22156032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane stress increases cation permeability in red cells.
    Johnson RM
    Biophys J; 1994 Nov; 67(5):1876-81. PubMed ID: 7858123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of ektacytometry to determine red cell susceptibility to oxidative stress.
    Kuypers FA; Scott MD; Schott MA; Lubin B; Chiu DT
    J Lab Clin Med; 1990 Oct; 116(4):535-45. PubMed ID: 2212862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Assessment of hemorheological deformability of human red cells exposed to tert-butyl hydroperoxide, verapamil and ascorbate by ektacytometer].
    Kim DH; Kim YK; Won DI; Shin S; Suh JS
    Korean J Lab Med; 2008 Oct; 28(5):325-31. PubMed ID: 18971612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased deformability of the X-ray-irradiated red blood cells stored in mannitol-adenine-phosphate medium.
    Suzuki Y; Tateishi N; Cicha I; Shiba M; Muraoka M; Tadokoro K; Maeda N
    Clin Hemorheol Microcirc; 2000; 22(2):131-41. PubMed ID: 10831063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress.
    Simmonds MJ; Atac N; Baskurt OK; Meiselman HJ; Yalcin O
    Biorheology; 2014; 51(2-3):171-85. PubMed ID: 24948378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leak formation in human erythrocytes by the radical-forming oxidant t-butylhydroperoxide.
    Deuticke B; Heller KB; Haest CW
    Biochim Biophys Acta; 1986 Jan; 854(2):169-83. PubMed ID: 3942722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage.
    Baskurt OK; Uyuklu M; Meiselman HJ
    Biorheology; 2004; 41(2):79-89. PubMed ID: 15090678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory deformation of human erythrocytes in sinusoidally modulated shear flow.
    Kon K; Murakami J; Takaoka K; Shiga T
    Biorheology; 1988; 25(1-2):49-56. PubMed ID: 3196836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative processes in red blood cells from normal and diabetic individuals.
    Bryszewska M; Zavodnik IB; Niekurzak A; Szosland K
    Biochem Mol Biol Int; 1995 Oct; 37(2):345-54. PubMed ID: 8673018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of equine erythrocytes to oxidant-induced rheologic alterations.
    Baskurt OK; Meiselman HJ
    Am J Vet Res; 1999 Oct; 60(10):1301-6. PubMed ID: 10791945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase activity of normal and diabetic human erythrocyte membranes: the effect of oxidative agents.
    Krajewska E; Zavodnik I; Kluska B; Szosland K; Bryszewska M
    Biochem Mol Biol Int; 1997 Jun; 42(1):203-10. PubMed ID: 9192101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.