These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19325632)

  • 1. Volcanic mesocyclones.
    Chakraborty P; Gioia G; Kieffer SW
    Nature; 2009 Mar; 458(7237):497-500. PubMed ID: 19325632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The January 2022 eruption of Hunga Tonga-Hunga Ha'apai volcano reached the mesosphere.
    Proud SR; Prata AT; Schmauß S
    Science; 2022 Nov; 378(6619):554-557. PubMed ID: 36378963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland.
    Woodhouse MJ; Behnke SA
    Bull Volcanol; 2014; 76(8):828. PubMed ID: 26069388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the plume dynamics of explosive super-eruptions.
    Costa A; J Suzuki Y; Koyaguchi T
    Nat Commun; 2018 Feb; 9(1):654. PubMed ID: 29440642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes.
    Wood K; Liu EJ; Richardson T; Clarke R; Freer J; Aiuppa A; Giudice G; Bitetto M; Mulina K; Itikarai I
    Front Robot AI; 2020; 7():549716. PubMed ID: 33501316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volcanic electrification: recent advances and future perspectives.
    Cimarelli C; Behnke S; Genareau K; Harper JM; Van Eaton AR
    Bull Volcanol; 2022; 84(8):78. PubMed ID: 35919878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere.
    Vernier JP; Fairlie TD; Deshler T; Natarajan M; Knepp T; Foster K; Wienhold FG; Bedka KM; Thomason L; Trepte C
    J Geophys Res Atmos; 2016 Sep; 121(18):11104-11118. PubMed ID: 29082118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the use of plume models to estimate the flux in volcanic gas plumes.
    Woitischek J; Mingotti N; Edmonds M; Woods AW
    Nat Commun; 2021 May; 12(1):2719. PubMed ID: 33976131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stokes settling and particle-laden plumes: implications for deep-sea mining and volcanic eruption plumes.
    Mingotti N; Woods AW
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2179):20190532. PubMed ID: 32762438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula.
    Evangelista H; Castagna A; Correia A; Potocki M; Aquino F; Alencar A; Mayewski P; Kurbatov A; Jaña R; Nogueira J; Licinio M; Alves E; Simões JC
    An Acad Bras Cienc; 2022; 94(suppl 1):e20210810. PubMed ID: 35442299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric chemistry in volcanic plumes.
    von Glasow R
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6594-9. PubMed ID: 20368458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.
    Ripepe M; Barfucci G; De Angelis S; Delle Donne D; Lacanna G; Marchetti E
    Sci Rep; 2016 Nov; 6():36727. PubMed ID: 27830768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.
    Castro JM; Dingwell DB
    Nature; 2009 Oct; 461(7265):780-3. PubMed ID: 19812671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.
    Dannberg J; Sobolev SV
    Nat Commun; 2015 Apr; 6():6960. PubMed ID: 25907970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations of lightning in relation to transitions in volcanic activity during the 3 June 2018 Fuego Eruption.
    Schultz CJ; Andrews VP; Genareau KD; Naeger AR
    Sci Rep; 2020 Oct; 10(1):18015. PubMed ID: 33093523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airborne studies of the emissions from the volcanic eruptions of mount st. Helens.
    Hobbs PV; Radke LF; Eltgroth MW; Hegg DA
    Science; 1981 Feb; 211(4484):816-8. PubMed ID: 17740388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
    Diaz JA; Pieri D; Wright K; Sorensen P; Kline-Shoder R; Arkin CR; Fladeland M; Bland G; Buongiorno MF; Ramirez C; Corrales E; Alan A; Alegria O; Diaz D; Linick J
    J Am Soc Mass Spectrom; 2015 Feb; 26(2):292-304. PubMed ID: 25588720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric evolution of sulfur emissions from Kı̅lauea: real-time measurements of oxidation, dilution, and neutralization within a volcanic plume.
    Kroll JH; Cross ES; Hunter JF; Pai S; ; ; Wallace LM; Croteau PL; Jayne JT; Worsnop DR; Heald CL; Murphy JG; Frankel SL
    Environ Sci Technol; 2015 Apr; 49(7):4129-37. PubMed ID: 25734883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions.
    Thomas RJ; Krehbiel PR; Rison W; Edens HE; Aulich GD; Winn WP; McNutt SR; Tytgat G; Clark E
    Science; 2007 Feb; 315(5815):1097. PubMed ID: 17322054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from mount pinatubo.
    Wallace PJ; Gerlach TM
    Science; 1994 Jul; 265(5171):497-9. PubMed ID: 17781307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.