These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19325720)

  • 21. Computational Feasibility of an Exhaustive Search of Side-Chain Conformations in Protein-Protein Docking.
    Dauzhenka T; Kundrotas PJ; Vakser IA
    J Comput Chem; 2018 Sep; 39(24):2012-2021. PubMed ID: 30226647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BiGGER: a new (soft) docking algorithm for predicting protein interactions.
    Palma PN; Krippahl L; Wampler JE; Moura JJ
    Proteins; 2000 Jun; 39(4):372-84. PubMed ID: 10813819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SDOCK: a global protein-protein docking program using stepwise force-field potentials.
    Zhang C; Lai L
    J Comput Chem; 2011 Sep; 32(12):2598-612. PubMed ID: 21618559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking.
    Gao Y; Douguet D; Tovchigrechko A; Vakser IA
    Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Docking protein domains in contact space.
    Lise S; Walker-Taylor A; Jones DT
    BMC Bioinformatics; 2006 Jun; 7():310. PubMed ID: 16790041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New conformational search method using genetic algorithm and knot theory for proteins.
    Sakae Y; Hiroyasu T; Miki M; Okamoto Y
    Pac Symp Biocomput; 2011; ():217-28. PubMed ID: 21121049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.
    Wang H; Liu H; Cai L; Wang C; Lv Q
    BMC Bioinformatics; 2017 Jul; 18(1):327. PubMed ID: 28693470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC.
    Nanias M; Chinchio M; Ołdziej S; Czaplewski C; Scheraga HA
    J Comput Chem; 2005 Nov; 26(14):1472-86. PubMed ID: 16088925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.
    Chen IJ; Foloppe N
    Bioorg Med Chem; 2013 Dec; 21(24):7898-920. PubMed ID: 24184215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled simulated annealing.
    Xavier-de-Souza S; Suykens JA; Vandewalle J; Bolle D
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):320-35. PubMed ID: 19651558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulated annealing with restrained molecular dynamics using a flexible restraint potential: theory and evaluation with simulated NMR constraints.
    Bassolino-Klimas D; Tejero R; Krystek SR; Metzler WJ; Montelione GT; Bruccoleri RE
    Protein Sci; 1996 Apr; 5(4):593-603. PubMed ID: 8845749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design.
    Andrianov AM; Anishchenko IV
    J Biomol Struct Dyn; 2009 Oct; 27(2):179-93. PubMed ID: 19583444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling protein docking using shape complementarity, electrostatics and biochemical information.
    Gabb HA; Jackson RM; Sternberg MJ
    J Mol Biol; 1997 Sep; 272(1):106-20. PubMed ID: 9299341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FRODOCK: a new approach for fast rotational protein-protein docking.
    Garzon JI; Lopéz-Blanco JR; Pons C; Kovacs J; Abagyan R; Fernandez-Recio J; Chacon P
    Bioinformatics; 2009 Oct; 25(19):2544-51. PubMed ID: 19620099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast protein-protein docking algorithm using series expansion in terms of spherical basis functions.
    Sumikoshi K; Terada T; Nakamura S; Shimizu K
    Genome Inform; 2005; 16(2):161-73. PubMed ID: 16901099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking.
    Feliu E; Aloy P; Oliva B
    Protein Sci; 2011 Mar; 20(3):529-41. PubMed ID: 21432933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of DNA and RNA structure with the NARES-2P force field and conformational space annealing.
    Sieradzan AK; Golon Ł; Liwo A
    Phys Chem Chem Phys; 2018 Jul; 20(29):19656-19663. PubMed ID: 30014063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulated Q-annealing: conformational search with an effective potential.
    Son WJ; Jang S; Shin S
    J Mol Model; 2012 Jan; 18(1):213-20. PubMed ID: 21523533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distance-constrained molecular docking by simulated annealing.
    Yue SY
    Protein Eng; 1990 Dec; 4(2):177-84. PubMed ID: 2075193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.