These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1932588)

  • 1. Ultracytochemistry of the secretory pathway in Saccharomyces cerevisiae defies the established pathway model.
    Vorísek J
    Electron Microsc Rev; 1991; 4(2):377-400. PubMed ID: 1932588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochemical images of secretion in Saccharomyces cerevisiae and animal cells are different.
    Vorísek J
    Acta Histochem; 1998 Nov; 100(4):419-38. PubMed ID: 9842421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae.
    Piper RC; Cooper AA; Yang H; Stevens TH
    J Cell Biol; 1995 Nov; 131(3):603-17. PubMed ID: 7593183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron cytochemical reaction for dipeptidyl aminopeptidase in the yeast Saccharomyces cerevisiae.
    Vorísek J; Schwencke J; Kotyk A
    Histochem J; 1985 May; 17(5):535-7. PubMed ID: 3897148
    [No Abstract]   [Full Text] [Related]  

  • 5. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae.
    Seeger M; Payne GS
    J Cell Biol; 1992 Aug; 118(3):531-40. PubMed ID: 1322413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultracytochemical evidence of Golgi functions in microvesicles at all phases of cell cycle in Saccharomyces cerevisiae.
    Vorísek J
    Micron; 1995; 26(2):175-90. PubMed ID: 7767635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased sterol formation in Saccharomyces cerevisiae. Analysis of cell components and ultrastructure of vacuoles.
    Bĕhalová B; Vorísek J
    Folia Microbiol (Praha); 1988; 33(4):292-7. PubMed ID: 3053366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route.
    Bryant NJ; Piper RC; Gerrard SR; Stevens TH
    Eur J Cell Biol; 1998 May; 76(1):43-52. PubMed ID: 9650782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway.
    Rothman JH; Stevens TH
    Cell; 1986 Dec; 47(6):1041-51. PubMed ID: 3536126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant.
    Graham TR; Emr SD
    J Cell Biol; 1991 Jul; 114(2):207-18. PubMed ID: 2071670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole.
    Cowles CR; Odorizzi G; Payne GS; Emr SD
    Cell; 1997 Oct; 91(1):109-18. PubMed ID: 9335339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional morphology of the secretory pathway organelles in yeast.
    Vorísek J
    Microsc Res Tech; 2000 Dec; 51(6):530-46. PubMed ID: 11169856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues.
    Nothwehr SF; Roberts CJ; Stevens TH
    J Cell Biol; 1993 Jun; 121(6):1197-209. PubMed ID: 8509444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel secreted glycoprotein of the yeast Saccharomyces cerevisiae stimulated by heat shock.
    Lupashin VV; Kononova SV; Ratner YeN ; Tsiomenko AB; Kulaev IS
    Yeast; 1992 Mar; 8(3):157-69. PubMed ID: 1574924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole.
    Wilcox CA; Redding K; Wright R; Fuller RS
    Mol Biol Cell; 1992 Dec; 3(12):1353-71. PubMed ID: 1493334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole.
    Rieder SE; Emr SD
    Mol Biol Cell; 1997 Nov; 8(11):2307-27. PubMed ID: 9362071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated import and degradation of a cytosolic protein in the yeast vacuole.
    Chiang HL; Schekman R
    Nature; 1991 Mar; 350(6316):313-8. PubMed ID: 1848921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultracytochemical localization of the vacuolar marker enzymes alkaline phosphatase, adenosine triphosphatase, carboxypeptidase Y and aminopeptidase reveal new concept of vacuole biogenesis in Saccharomyces cerevisiae.
    Vorísek J
    Histochemistry; 1989; 92(5):421-32. PubMed ID: 2531129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Import into and degradation of cytosolic proteins by isolated yeast vacuoles.
    Horst M; Knecht EC; Schu PV
    Mol Biol Cell; 1999 Sep; 10(9):2879-89. PubMed ID: 10473633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole.
    Roberts CJ; Pohlig G; Rothman JH; Stevens TH
    J Cell Biol; 1989 Apr; 108(4):1363-73. PubMed ID: 2647766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.