BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19326267)

  • 1. Exposure modeling in occupational hygiene decision making.
    Vadali M; Ramachandran G; Mulhausen J
    J Occup Environ Hyg; 2009 Jun; 6(6):353-62. PubMed ID: 19326267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rating exposure control using Bayesian decision analysis.
    Hewett P; Logan P; Mulhausen J; Ramachandran G; Banerjee S
    J Occup Environ Hyg; 2006 Oct; 3(10):568-81. PubMed ID: 16998991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian hierarchical framework for occupational hygiene decision making.
    Banerjee S; Ramachandran G; Vadali M; Sahmel J
    Ann Occup Hyg; 2014 Nov; 58(9):1079-93. PubMed ID: 25169203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model to systematically employ professional judgment in the Bayesian Decision Analysis for a semiconductor industry exposure assessment.
    Torres C; Jones R; Boelter F; Poole J; Dell L; Harper P
    J Occup Environ Hyg; 2014; 11(6):343-53. PubMed ID: 24274915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An empirical hierarchical Bayesian unification of occupational exposure assessment methods.
    Sottas PE; Lavoué J; Bruzzi R; Vernez D; Charrière N; Droz PO
    Stat Med; 2009 Jan; 28(1):75-93. PubMed ID: 18991317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of training, education, professional experience, and need for cognition on accuracy of exposure assessment decision-making.
    Vadali M; Ramachandran G; Banerjee S
    Ann Occup Hyg; 2012 Apr; 56(3):292-304. PubMed ID: 22186374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the value for money of changing clinical practice change: a stochastic application in diabetes care.
    Hoomans T; Abrams KR; Ament AJ; Evers SM; Severens JL
    Med Care; 2009 Oct; 47(10):1053-61. PubMed ID: 19648827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method.
    Lo SC; Ma HW; Lo SL
    Sci Total Environ; 2005 Mar; 340(1-3):23-33. PubMed ID: 15752490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer.
    Steenland K; Greenland S
    Am J Epidemiol; 2004 Aug; 160(4):384-92. PubMed ID: 15286024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure models for the prior distribution in bayesian decision analysis for occupational hygiene decision making.
    Lee EG; Kim SW; Feigley CE; Harper M
    J Occup Environ Hyg; 2013; 10(2):97-108. PubMed ID: 23252451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward better exposure assessment strategies--the new NIOSH initiative.
    Ramachandran G
    Ann Occup Hyg; 2008 Jul; 52(5):297-301. PubMed ID: 18515849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Hierarchical Modelling of Historical Data of the South African Coal Mining Industry for Compliance Testing.
    Made F; Kandala NB; Brouwer D
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing influence views from data to support dynamic decision making in medicine.
    Qi XZ; Leong TY
    Stud Health Technol Inform; 2001; 84(Pt 2):1389-93. PubMed ID: 11604955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative level of protection offered to workers by ACGIH threshold limit values occupational exposure limits.
    Jayjock MA; Lewis PG; Lynch JR
    AIHAJ; 2001; 62(1):4-11. PubMed ID: 11258867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occupational exposure decisions: can limited data interpretation training help improve accuracy?
    Logan P; Ramachandran G; Mulhausen J; Hewett P
    Ann Occup Hyg; 2009 Jun; 53(4):311-24. PubMed ID: 19332428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extension of Bayesian expected power and its application in decision making.
    Liu F
    J Biopharm Stat; 2010 Sep; 20(5):941-53. PubMed ID: 20721783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers.
    Stayner L; Vrijheid M; Cardis E; Stram DO; Deltour I; Gilbert SJ; Howe G
    Radiat Res; 2007 Dec; 168(6):757-63. PubMed ID: 18088178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo method for calculating Bayesian uncertainties in internal dosimetry.
    Puncher M; Birchall A
    Radiat Prot Dosimetry; 2008; 132(1):1-12. PubMed ID: 18806256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrospective exposure assessment using Bayesian methods.
    Ramachandran G
    Ann Occup Hyg; 2001 Nov; 45(8):651-67. PubMed ID: 11718661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards quantitative uncertainty assessment for cancer risks: central estimates and probability distributions of risk in dose-response modeling.
    Kopylev L; Chen C; White P
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):203-7. PubMed ID: 17905499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.