These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19326356)

  • 21. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2.
    Chakraborty S; Raj CR
    Biosens Bioelectron; 2009 Jul; 24(11):3264-8. PubMed ID: 19442506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanolocomotion - catalytic nanomotors and nanorotors.
    Mirkovic T; Zacharia NS; Scholes GD; Ozin GA
    Small; 2010 Jan; 6(2):159-67. PubMed ID: 19911393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemically-triggered motion of catalytic nanomotors.
    Calvo-Marzal P; Manesh KM; Kagan D; Balasubramanian S; Cardona M; Flechsig GU; Posner J; Wang J
    Chem Commun (Camb); 2009 Aug; (30):4509-11. PubMed ID: 19617966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytically induced electrokinetics for motors and micropumps.
    Paxton WF; Baker PT; Kline TR; Wang Y; Mallouk TE; Sen A
    J Am Chem Soc; 2006 Nov; 128(46):14881-8. PubMed ID: 17105298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation.
    Escamilla-Gómez V; Campuzano S; Pedrero M; Pingarrón JM
    Biosens Bioelectron; 2009 Jul; 24(11):3365-71. PubMed ID: 19481924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short- and long-term stability of resonant quartz temperature sensors.
    Spassov L; Gadjanova V; Velcheva R; Dulmet B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1626-31. PubMed ID: 18986952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion-driven sensing and biosensing using electrochemically propelled nanomotors.
    Campuzano S; Kagan D; Orozco J; Wang J
    Analyst; 2011 Nov; 136(22):4621-30. PubMed ID: 21915400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular rotors and motors: recent advances and future challenges.
    Michl J; Sykes EC
    ACS Nano; 2009 May; 3(5):1042-8. PubMed ID: 19845364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli.
    Sundararajan S; Sengupta S; Ibele ME; Sen A
    Small; 2010 Jul; 6(14):1479-82. PubMed ID: 20564727
    [No Abstract]   [Full Text] [Related]  

  • 30. Ultrasound-radiated synthesis of PAMAM-Au nanocomposites and its application on glucose biosensor.
    Wei Y; Li Y; Zhang N; Shi G; Jin L
    Ultrason Sonochem; 2010 Jan; 17(1):17-20. PubMed ID: 19695942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound-modulated bubble propulsion of chemically powered microengines.
    Xu T; Soto F; Gao W; Garcia-Gradilla V; Li J; Zhang X; Wang J
    J Am Chem Soc; 2014 Jun; 136(24):8552-5. PubMed ID: 24898345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perspective: nanomotors without moving parts that propel themselves in solution.
    Kapral R
    J Chem Phys; 2013 Jan; 138(2):020901. PubMed ID: 23320656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Template-assisted fabrication of salt-independent catalytic tubular microengines.
    Manesh KM; Cardona M; Yuan R; Clark M; Kagan D; Balasubramanian S; Wang J
    ACS Nano; 2010 Apr; 4(4):1799-804. PubMed ID: 20230041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient damage-free correction of thickness distribution of quartz crystal wafers by atmospheric pressure plasma etching.
    Yamamura K; Morikawa T; Ueda M; Nagano M; Zettsu N; Shibahara M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1128-30. PubMed ID: 19574119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver.
    Kagan D; Calvo-Marzal P; Balasubramanian S; Sattayasamitsathit S; Manesh KM; Flechsig GU; Wang J
    J Am Chem Soc; 2009 Sep; 131(34):12082-3. PubMed ID: 19670862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoresonant signal boosters for carbon nanotube based infrared detectors.
    Fung CK; Xi N; Shanker B; Lai KW
    Nanotechnology; 2009 May; 20(18):185201. PubMed ID: 19420605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of nanosized Pt on rutile TiO2 using a standing wave sonochemical reactor (SWSR)--observation of an enhanced catalytic oxidation of CO.
    Sivakumar M; Towata A; Yasui K; Tuziuti T; Kozuka T; Tsujimoto M; Zhong Z; Iida Y
    Ultrason Sonochem; 2010 Jan; 17(1):213-8. PubMed ID: 19632873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors.
    Ortiz-Rivera I; Mathesh M; Wilson DA
    Acc Chem Res; 2018 Sep; 51(9):1891-1900. PubMed ID: 30179450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic nanomotors: autonomous movement of striped nanorods.
    Paxton WF; Kistler KC; Olmeda CC; Sen A; St Angelo SK; Cao Y; Mallouk TE; Lammert PE; Crespi VH
    J Am Chem Soc; 2004 Oct; 126(41):13424-31. PubMed ID: 15479099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor.
    Song Y; Cui K; Wang L; Chen S
    Nanotechnology; 2009 Mar; 20(10):105501. PubMed ID: 19417520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.