These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19326458)

  • 1. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of local geometry of protein surfaces with the visibility criterion.
    Li B; Turuvekere S; Agrawal M; La D; Ramani K; Kihara D
    Proteins; 2008 May; 71(2):670-83. PubMed ID: 17975834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SplitPocket: identification of protein functional surfaces and characterization of their spatial patterns.
    Tseng YY; Dupree C; Chen ZJ; Li WH
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W384-9. PubMed ID: 19406922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fPOP: footprinting functional pockets of proteins by comparative spatial patterns.
    Tseng YY; Chen ZJ; Li WH
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D288-95. PubMed ID: 19880384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architectural repertoire of ligand-binding pockets on protein surfaces.
    Weisel M; Kriegl JM; Schneider G
    Chembiochem; 2010 Mar; 11(4):556-63. PubMed ID: 20069621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting enzyme functional surfaces and locating key residues automatically from structures.
    Tseng YY; Liang J
    Ann Biomed Eng; 2007 Jun; 35(6):1037-42. PubMed ID: 17294116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape variation in protein binding pockets and their ligands.
    Kahraman A; Morris RJ; Laskowski RA; Thornton JM
    J Mol Biol; 2007 Apr; 368(1):283-301. PubMed ID: 17337005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.
    Kupas K; Ultsch A; Klebe G
    Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational approaches to identifying and characterizing protein binding sites for ligand design.
    Henrich S; Salo-Ahen OM; Huang B; Rippmann FF; Cruciani G; Wade RC
    J Mol Recognit; 2010; 23(2):209-19. PubMed ID: 19746440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the ligand binding sites on the molecular surface of proteins.
    Kinoshita K; Nakamura H
    Protein Sci; 2005 Mar; 14(3):711-8. PubMed ID: 15689509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin.
    Zhou CL; Zemla AT; Roe D; Young M; Lam M; Schoeniger JS; Balhorn R
    Bioinformatics; 2005 Jul; 21(14):3089-96. PubMed ID: 15905278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA; Rao BG; Charifson P
    Proteins; 2008 May; 71(3):1519-38. PubMed ID: 18300249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the searching abilities of HBOP and HBSITE for binding pocket detection.
    Oda A; Yamaotsu N; Hirono S
    J Comput Chem; 2009 Dec; 30(16):2728-37. PubMed ID: 19399761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of multiscale pockets on protein surfaces using mathematical morphology.
    Kawabata T
    Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.