BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19326767)

  • 1. Effect of dehydration on phonation threshold flow in excised canine larynges.
    Witt RE; Regner MF; Tao C; Rieves AL; Zhuang P; Jiang JJ
    Ann Otol Rhinol Laryngol; 2009 Feb; 118(2):154-9. PubMed ID: 19326767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dehydration on phonation in excised canine larynges.
    Jiang J; Verdolini K; Aquino B; Ng J; Hanson D
    Ann Otol Rhinol Laryngol; 2000 Jun; 109(6):568-75. PubMed ID: 10855568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Onset and offset phonation threshold flow in excised canine larynges.
    Regner MF; Tao C; Zhuang P; Jiang JJ
    Laryngoscope; 2008 Jul; 118(7):1313-7. PubMed ID: 18401267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonation threshold flow in elongated excised larynges.
    Jiang JJ; Regner MF; Tao C; Pauls S
    Ann Otol Rhinol Laryngol; 2008 Jul; 117(7):548-53. PubMed ID: 18700432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of rehydration on phonation in excised canine larynges.
    Jiang J; Ng J; Hanson D
    J Voice; 1999 Mar; 13(1):51-9. PubMed ID: 10223675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of variations to a simulated system of straw phonation therapy on aerodynamic parameters using excised canine larynges.
    Conroy ER; Hennick TM; Awan SN; Hoffman MR; Smith BL; Jiang JJ
    J Voice; 2014 Jan; 28(1):1-6. PubMed ID: 24286626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surface dehydration on mucosal wave amplitude and frequency in excised canine larynges.
    Witt RE; Taylor LN; Regner MF; Jiang JJ
    Otolaryngol Head Neck Surg; 2011 Jan; 144(1):108-13. PubMed ID: 21493398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing phonation threshold flow and pressure by abducting excised larynges.
    Hottinger DG; Tao C; Jiang JJ
    Laryngoscope; 2007 Sep; 117(9):1695-9. PubMed ID: 17762794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonation threshold pressure and flow in excised human larynges.
    Mau T; Muhlestein J; Callahan S; Weinheimer KT; Chan RW
    Laryngoscope; 2011 Aug; 121(8):1743-51. PubMed ID: 21792964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonation instability flow in excised canine larynges.
    Hoffman MR; Rieves AL; Budde AJ; Surender K; Zhang Y; Jiang JJ
    J Voice; 2012 May; 26(3):280-4. PubMed ID: 21555205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a simulated system of straw phonation on the complete phonatory range of excised canine larynges.
    Kang J; Scholp A; Tangney J; Jiang JJ
    Eur Arch Otorhinolaryngol; 2019 Feb; 276(2):473-482. PubMed ID: 30631899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival in Vivo Canine Phonation Model Without Stimulation.
    Liu K; Ge P; Sheng X; Jiang J; Qin H
    Ann Otol Rhinol Laryngol; 2018 Mar; 127(3):178-184. PubMed ID: 29298508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.
    Patel RR; Walker R; Sivasankar PM
    J Voice; 2016 Jul; 30(4):427-33. PubMed ID: 26277075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system.
    Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N
    Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.