These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19326870)

  • 1. Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers.
    Sheng X; Zhang J
    Langmuir; 2009 Jun; 25(12):6916-22. PubMed ID: 19326870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drop impact upon micro- and nanostructured superhydrophobic surfaces.
    Tsai P; Pacheco S; Pirat C; Lefferts L; Lohse D
    Langmuir; 2009 Oct; 25(20):12293-8. PubMed ID: 19821629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable biomimetic superhydrophobic surfaces fabricated by polymer replication method from hierarchically structured surfaces of Al templates.
    Lee Y; Ju KY; Lee JK
    Langmuir; 2010 Sep; 26(17):14103-10. PubMed ID: 20698521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic surface fabricated by bulk photografting of acrylic acid onto high-density polyethylene.
    Han J; Wang X; Wang H
    J Colloid Interface Sci; 2008 Oct; 326(2):360-5. PubMed ID: 18653198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability.
    Lee W; Jin MK; Yoo WC; Lee JK
    Langmuir; 2004 Aug; 20(18):7665-9. PubMed ID: 15323517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable.
    Lee W; Park BG; Kim DH; Ahn DJ; Park Y; Lee SH; Lee KB
    Langmuir; 2010 Feb; 26(3):1412-5. PubMed ID: 20039661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.
    Shirgholami MA; Khalil-Abad MS; Khajavi R; Yazdanshenas ME
    J Colloid Interface Sci; 2011 Jul; 359(2):530-5. PubMed ID: 21536303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step.
    Vogelaar L; Lammertink RG; Wessling M
    Langmuir; 2006 Mar; 22(7):3125-30. PubMed ID: 16548567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tens of centimeter-scale flexible superhydrophobic nanofiber structures through curing process.
    Lee S; Kang JH; Lee SJ; Hwang W
    Lab Chip; 2009 Aug; 9(15):2234-7. PubMed ID: 19606302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates.
    Qu M; Zhao G; Wang Q; Cao X; Zhang J
    Nanotechnology; 2008 Feb; 19(5):055707. PubMed ID: 21817621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers.
    Wang N; Xi J; Wang S; Liu H; Feng L; Jiang L
    J Colloid Interface Sci; 2008 Apr; 320(2):365-8. PubMed ID: 18295229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells.
    Haberkorn N; Gutmann JS; Theato P
    ACS Nano; 2009 Jun; 3(6):1415-22. PubMed ID: 19453142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.
    Wang GJ; Lin YC; Li CW; Hsueh CC; Hsu SH; Hung HS
    Biomed Microdevices; 2009 Aug; 11(4):843-50. PubMed ID: 19365732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.
    Qian B; Shen Z
    Langmuir; 2005 Sep; 21(20):9007-9. PubMed ID: 16171323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.
    Sun C; Gu ZZ; Xu H
    Langmuir; 2009 Nov; 25(21):12439-43. PubMed ID: 19785469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing and receding contact angle investigations for highly sticky and slippery aluminum surfaces fabricated from nanostructured anodic oxide.
    Nakajima D; Kikuchi T; Natsui S; Suzuki RO
    RSC Adv; 2018 Nov; 8(65):37315-37323. PubMed ID: 35557771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces.
    Nosonovsky M; Bhushan B
    Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air- and light-stable superhydrophobic colored surfaces based on supported organic nanowires.
    Borras A; Gröning P; Sanchez-Valencia JR; Barranco A; Espinos JP; Gonzalez-Elipe AR
    Langmuir; 2010 Feb; 26(3):1487-92. PubMed ID: 20028186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.