BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19327814)

  • 1. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal.
    Tsang DC; Graham NJ; Lo IM
    Chemosphere; 2009 Jun; 75(10):1338-43. PubMed ID: 19327814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid.
    Baigorri R; Fuentes M; González-Gaitano G; García-Mina JM; Almendros G; González-Vila FJ
    J Agric Food Chem; 2009 Apr; 57(8):3266-72. PubMed ID: 19281175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron.
    Mak MS; Rao P; Lo IM
    Water Res; 2009 Sep; 43(17):4296-304. PubMed ID: 19580986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Fe-humic complexes in an Fe-enriched biosolid by-product of water treatment.
    Pérez-Sanz A; Lucena JJ; Graham MC
    Chemosphere; 2006 Dec; 65(11):2045-53. PubMed ID: 16876228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.
    Lippold H; Evans ND; Warwick P; Kupsch H
    Chemosphere; 2007 Mar; 67(5):1050-6. PubMed ID: 17140629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dissolved organic matter on the growth of algae, Pseudokirchneriella subcapitata, in Korean lakes: the importance of complexation reactions.
    Lee J; Park JH; Shin YS; Lee BC; Chang NI; Cho J; Kim SD
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):335-43. PubMed ID: 18313752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid.
    Mak MS; Rao P; Lo IM
    Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill.
    Chai X; Shimaoka T; Cao X; Guo Q; Zhao Y
    Chemosphere; 2007 Nov; 69(9):1446-53. PubMed ID: 17585995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.
    Mak MS; Lo IM; Liu T
    Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As.
    Sharma P; Ofner J; Kappler A
    Environ Sci Technol; 2010 Jun; 44(12):4479-85. PubMed ID: 20433135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.
    Batchelli S; Muller FL; Chang KC; Lee CL
    Environ Sci Technol; 2010 Nov; 44(22):8485-90. PubMed ID: 20964358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups.
    Chi FH; Amy GL
    J Colloid Interface Sci; 2004 Jun; 274(2):380-91. PubMed ID: 15144809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.